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ABSTRACT 

This report summarizes the research and software artifacts produced as part of the Agile 
Information Control Environment (AICE) program in the area of real-time content-based 
information dissemination through resource-constrained channelization. By identifying 
opportunities to multicast shared information needs to multiple users simultaneously, 
channelization increases the information throughput of information dissemination system 
while balancing the sender/receiver processing load. 

Multiple channelization algorithms are presented within this report and their 
characteristics explored. A mathematical framework for analyzing these algorithms is 
outlined and corresponding measures of effectiveness defined. Besides theoretical 
analysis, the report outlines simulation-based models and operational tools used to 
quantify the various algorithms' performance within the context of the theoretical 
measurements. From our analysis and simulations based on operational missions, the 
report concludes that channelization can reduce the network load while increasing the 
information throughput by more than 100% compared to traditional unicast stove-pipe 
approaches. 
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1. SUMMARY 

The mission of the DARPA/ITO Agile Information Control Environment (AICE) 
program is to research and quantify techniques for maximizing the utility of mission- 
critical information delivered over finite heterogeneous network and end-host resources. 
The utility of information is defined as the value of the information to the user; not the 
bandwidth or other resources consumed by transmitting the information. The program 
also provides a command and control capability that allows commanders to define 
policies dictating how resources should be allocated when conflicts occur. 

Under AICE, the Scalable Techniques for Large Scale Dynamic Channel Building 
(ChannelTech) project conducted by TASC investigated and characterized approaches for 
constructing shared multicast channels that improved information throughput. From this 
investigation, TASC developed a mathematical framework for characterizing 
channelization algorithms; simulation models for characterizing performance; and 
operational software that is being incorporated into the near-term fielded Information 
Dissemination Management (TDM) system as part of the GCCS. 

The analysis defines the channelization problem as an optimization problem over a set of 
sets with individual "utility" measures on each set. Nominally, the resulting channels 
satisfy properties such as orthogonality and precision that are summarized in this report 
and described in full within the published papers in the appendix. Through the software 
simulation tools (also described in this report), channelization algorithms are shown to 
improve information throughput. However, the performance of different channelization 
approaches varies with the system architecture and user constraints. 
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2. INTRODUCTION 

The Scalable Techniques for Large Scale Dynamic Channel Building (ChannelTech) 
project is a three-year research and development effort conducted by TASC under the 
DARPA/ITO Agile Information Control Environment (AICE) program. The objective of 
the ChannelTech project is to develop fast, computationally tractable algorithms for the 
construction of channels that maximize the utility of information delivered to the user 
subject to resource limitations. 

This work is currently organized into a base task and four options that provide increasing 
performance and capabilities. Of these tasks, this report summarizes the work performed 
on the funded base and first optional tasks. They are: 

• Task 1 - Base: Provide support for Functional Architecture Control Board (FACB), 
System Engineering Control Board (SECB), and Performance, Analysis & Integration 
(PA&I) meetings. 

• Task 2.1 - Initial Static Channelization Techniques: Six-month activity to design and 
demonstrate analysis infrastructure and incorporate it within the AICE functional 
architecture. Develop performance models for basic channelization approaches under 
static loading conditions. Analyze and characterize the performance characteristics of 
the channelization algorithms. 

The out-year research activities listed below were not executed due to the early 
termination of the AICE program by the government. 

• Optional Task 2.2 - Advanced Static Channelization Techniques: Design and 
demonstrate advanced channelization approaches under static loading. Incorporate 
constrained optimization algorithms including source density models and network 
resource limitations. Investigate computational representations of information 
requests to enable abstract semantic processing. Analyze and characterize the 
performance characteristics of these algorithms. 

• Optional Task 3 - Dynamic Channelization Techniques: Design and demonstrate 
channelization approaches under dynamic loading conditions. Analyze and 
characterize the performance characteristics with emphasis on real-time scalable 
processing. 

• Optional Task 4 - Multiresolution Channelization Techniques: Design and 
demonstrate highly-scalable algorithms using multiresolution approaches to reduce 
problem complexity. 

This final report summarizes the approach and accomplishments of the ChannelTech 
project. The remainder of this section provides the executive summary of the project 
structure and results. Specifically, Section 1.1 defines the relationship of this work 
within the context of the AICE functional architecture. Then, Section 1.2 describes 
TASC's structured approach to research and development. Finally, Sections 1.3 and 1.4 
summarize the major accomplishments and project outputs. 

In Section 2, the problem is formulated and the solution algorithms are defined along 
with metrics for quantifying the performance.    Section 3 provides details about the 
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experimental and operational software developed under ChannelTech. Section 4 outlines 
the Experimentation and Comparative Analysis that was accomplished. Sections 5 
through 7 contain the project summary, bibliography, and acronym list, respectively. 

Appendix A contains manuals for software tools used during the research. Appendix B 
contains papers and articles related to the topic. 

2.1      RELATIONSHIP WITHIN AICE FUNCTIONAL 
ARCHITECTURE 

The mission of the AICE program is to research and quantify techniques for maximizing 
the utility of mission-critical information delivered over finite heterogeneous network and 
end-host resources. The utility of information is defined as the value of the information 
to the user; not the bandwidth or other resources consumed by transmitting the 
information. The program also provides a command and control capability that allows 
commanders to define policies dictating how resources should be allocated when 
conflicts occur. 

Producer 

Source          ^ 
Density Models 

Utility           p 
Constraints 

Resource         ^ 
Constraints - 

Consumer 

Information Needs 
& Destination 

Source, Destination, 
& Utility Function 

Source, Destination, 
&QoS 

Source & 
Destination 

Information Enabled Networks 
(Request information needs rather than connections) 

Utility-Enabled Networks 
(Allocate based on "value" of connection to user) 

QoS Enabled Networks (MetaNet) 
(Construct homogeneous QoS network) 

Traditional Networks 
(e.g., TCP/IP, UDP, Multicast) 

Figure 1-1: Functional Layers of the AICE Program 

Addressing the issues surrounding AICE, the program is roughly organized into three 
functional layers shown in Figure 1-1.   They are: 
• MetaNet Services: Addresses the homogeneity of networks by constructing a virtual 

network with resource reservation capabilities. 

• Utility-Enabled Networking (AIC1): Allocates network connections based on the 
"value" or "utility" of a particular set of QoS parameters to the user. This allows the 
system to make responsible decisions on when and how to degrade a particular 
connection to maximize the overall success of the missions. 

1 The acronyms for the components (i.e., AIC, AEI, and IPM) are based on historical discussions within the 
functional architecture and no longer accurately reflect the functionality performed at the specified layer. 
While we retain this notation for consistency across documentation, we have modified their names for the 
sake of clarity. 
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• Information-Enabled Networking (AEI): Performs network optimization based on 
information about the requested content as well as the utility. This allows resources 
to be shared across connections and removes the requirement that the user must 
understand the network requirements for the desired connection. 

In addition, policy services (IPM) ensure that service requests comply with resource 
allocation doctrine defined by commanders. These services may exist at the AIC layer 
where utility-based connections are scaled according to mission importance as well as at 
the AEI layer where policies manage information access and flow. 

At the AEI layer, the availability of metadata about the desired content combined with 
external system information allow for the construction of channels that multicast data to 
relevant users while maximizing the achieved utility. The ChannelTech R&D program 
investigates channelizations that achieve very fast, near-optimal solutions for the 
quiescent (static) and extremely fast quasi-optimal solutions for the incremental 
(dynamic) cases and have computational complexity 0(N log N)for N users. 

2.2     SUMMARY OF ACCOMPLISHMENTS 

A white paper titled Utility-Based Management of Information Dissemination [2] was 
completed and is included in Appendix B. This paper proposes a modified mathematical 
definition to the functional architecture and formulates the channelization problem as a 
resource optimization problem. Included in the paper are definitions of key 
channelization properties such as orthogonality, exactness, and precision along with 
proofs for algorithm characteristics for certain classes of channel algorithms. 

TASC has also completed initial analysis, simulation, and experimentation of the 
contaiment algorithm (see Section 4.5.3). Simulation results of the channelization 
algorithms reveal that, for large numbers of users, a set of orthogonally disjoint channels 
are constructed. This work is captured in a white paper titled Examining the Containment 
Algorithm [3]. Validating this analysis, an experiment with 1000 information requests 
was performed and resulted in approximately 60 channels within the network versus 1000 
channels in the absence of channelization. 

TASC has released and successfully installed, unit tested, and demonstrated the first 
release of the ChannelTech software at the PAC99 laboratory. Software highlights 
include: 
• Utility-based information requests and War-Fighter Editor: Leveraging prior work 

performed under DARPA/ISO BADD II, support of utility-based information 
requests was developed. With the modifications, users can construct information 
requests based on a dynamically loaded schema and command hierarchy, specify their 
information interests and connection characteristics, and submit them for 
channelization. Preliminary hooks to policy and other AICE layers are provided. 

• Dual Channelization Algorithms: Two channelization algorithms were developed 
during this reporting period. Under the trivial algorithm, each information request is 
assigned to a single channel. On the other hand, the containment algorithm 
aggregates any information request that is fully satisfied by another request onto a 
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shared channel. These algorithms have been tested to support in excess of 3000 
information requests. 

• Experimental Test Driver and Examples: A test harness that allows users to construct 
sample information request scenarios was developed.   For example, one script 
submits random requests for information at a fixed rate and then sequentially removes 
them. These provided the basis for the PAC99 experimentation. 

• Log Analysis Tool: This tool performs post-analysis of the log files to quantify the 
performance characteristics of the channelization algorithm. Information extracted 
includes channelization gain (the reduction of number of network requests due to 
channelization); channel orthogonality; and channel precision. The tool also 
measures our performance characteristics of the software such as memory consumed 
and end-to-end delay. 

In refining the functional architecture, TASC released a Unified Modeling Language 
(UML) model of the channelization components. This model contains detailed 
information about the representation of information requests or profiles to the 
channelization services and provides visibility into the operations performed by these 
services. This model also provides a cross-program integration plan between the 
DARPA/ISO BADD program that addressed basic information dissemination services 
and the DARPA/ITO AICE program that focuses on highly scalable information-enabled 
resource allocation algorithms. The latest version of this model can be found at the 
AICE website (http://aice.trw.com). 

2.3      SPECIFIC OUTPUTS AND TECHNOLOGY TRANSFER 

Table 1-1 lists the specific technical products generated by the ChannelTech project. The 
details of these outputs are discussed in the section referenced in the last column. In 
addition, numerous technical briefings have been provided throughout the project and are 
available upon request. 

Table 1-1 - Technical Products Generated by ChannelTech 
Output 

Utility-Based Management of 
Information Dissemination 

Examining the Containment 
Algorithm  
Real-time Information 
Management Environment 
(RIME) 

Type 

Report 

Report 

Abstract 

Description 

Mathematically formalizes utility- 
based information and proves key 
properties. 
Quantifies the characteristics and 
performance of the coverage algorithm. 
Description of the software 
architecture and performance 
characteristics. Submitted to SPIE 
AeroSense. 

Section/ 
Appendix 
B 

B 

B 

2 For comparison, the BADD system (ver. 4.3.1) which provides push-based delivery but lacks 
sophisticated channelization or resource management can only support between 300 and 500 requests 
before suffering serious performance degradation. 
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Output 

AEI Functional Architecture 
UML Model 

RIME Simulation Tool 

CPcrib Tool 

RIME Editor vl.O 

Type 

Model 

Software 

Software 

Software 

Description 

UML model describing the functional 
components of the RIME system. 
Developed in conjunction with the 
Arch. Control Boards  
Tool for prototyping channelization 
algorithms and visually inspecting 
characteristics. 
A Monte-Carlo simulation for exploring 
the theoretical properties of the 
various algorithms. 

RIME Server vl.O 

RIME Log Analysis Tool and 
Test harness 

Software 

Software 

User interface enabling users on Unix 
and NT workstations to construct 
utility-based information requests. 
Support for hierarchical policy 
construction is also provided. 

Section/ 
Appendix 
http://aice. 
trw.com 

A.1 

3.2.1/B 

A.3 

Content-based resource management 
channelization algorithms using utility 
information. Also incorporates 
rudimentary policy services for 
managing resource allocation.  
Includes tools for driving the 
simulations and performing post 
analysis. Tool also allows for visual 
exploration of channelization 
characteristics at particular instances 
in time.  

A.4 

A.2 

Technology transfer of the software is being accomplished, in part, through the 
DARPA/ISO BADD Phase II Transition program into the AUS/JPO IDM program. 
Specifically, ChannelTech improvements in request channelization have been integrated 
into version 4.6 of the BADD Core. This provides an order-of-magnitude performance 
improvement over the previous capability. Furthermore, AITS/JPO users may optionally 
use the testing harness software and analysis tools to better quantify system performance. 

Research products such as reports and models have been conveyed to the research 
community through public postings and conferences. For example, a paper titled "Real- 
time Information Management Environment (RIME)" has been accepted to appear at 
SPEE AeroSense 2000 in April. This paper includes, in part, results from the 
ChannelTech analysis and experimentation. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 

The ChannelTech process for producing the technical outputs of the project consists of 
two sub-processes: 
• Research Process: Represents two-thirds of the technical effort 
• Software Development Process: Represents one-third of the technical effort 
These two processes are coupled through a set of shared metrics that were used to 
compare the theory results against the actual capabilities implemented and transitioned. 
The overall organization of this final report coincides with this structure. 

3.1     RESEARCH APPROACH 
ChannelTech work was accomplished in two six-month research cycles. During each 
cycle the ChannelTech team is focused on exploring one or more well-defined research 
objectives through concept development, analysis, simulation, experimentation, and 
reporting. Certain ChannelTech concepts were also demonstrated at customer-sponsored 
meetings. 
The R&D Process that ChannelTech follows is composed of several lower-level 
processes that are organized on two levels - program-level processes and research 
objective-level processes as described in the following: 

Program-Level Processes 

• Plan Program - This includes all activities required to define the scope of the overall 
program, to establish program milestones, to obtain resources, and to define roles and 
responsibilities. This is performed at the beginning of the program and is reviewed 
periodically. 

• Develop Research Objectives - This is a technically oriented extension of the 
Program Planning process that is focused on defining the specific research objectives 
that need to be achieved in order for the Research Program to be considered 
successful. This includes top-level investigations to support definition of specific 
research objectives. This also requires periodic refinement of the Program Plan with 
respect to milestones and resources. This process will be conducted approximately 
every six months in order to define the direction of the project for the next research 
cycle. 

• Report Findings - Periodically, at the conclusion of work during a research cycle, or 
at the conclusion of the entire research program, this process includes all work needed 
to document and present the work performed and the findings obtained. This 
document reports the research findings at the conclusion of the program. 

Research Objective-Level Processes 

• Investigate - This process includes all work required to locate, review, assess, 
assimilate, and apply the potentially related work of others to the research objective 
under study. 
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Assess Current State of Knowledge - This process includes all activities performed to 
relate the prior work of others to the current research objective for the purpose of 
establishing a knowledge baseline. 

Develop Research Proposal - In this process the team: 
- Defines one or more hypotheses supporting a research objective, 
- Details the approach for proving or refuting the hypotheses, 
- Performs simulation to test the hypotheses, 
- Defines the specific methods and experiments needed to prove the hypotheses, 
- Identifies the resources and test environments required, and 
- States the results that are expected. 
For ChannelTech, the hypotheses are usually expressed as a set of algorithmic use 
cases. 
Conduct Experiments - This process includes all activities required to perform 
controlled tests to prove or refute a hypothesis. 

Prepare and Interpret Data - In this process the team transforms raw data from 
experiments into information upon which a subsequent analysis can be performed. 
This includes validating the data and removing or qualifying those entries judged to 
be invalid. It also includes interpreting and annotating the data with related 
information that may further qualify its validity and applicability. 

Conduct Analysis - This process involves the methodical examination of information 
to logically develop new knowledge related to the hypotheses under study. 

Develop Conclusions - This process includes all work required to relate newly 
developed knowledge to the hypotheses under study to determine whether the 
hypotheses were proven or refuted and hence, whether the research objectives were 
satisfied. 
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Research Objective 2 

Plan 
Program 

Identify 
Research 
Objectives 

Report 
Findings 

S/W Product Group 
Build Cycle 

Design and Develop 
' Software Modules 

Integrate and 
Test Software 

Prepare for 
Demonstration 

Conduct 
Demonstration 

Document Protocol 
Specification  

Figure 1-2: ChannelTech Project R&D Process Integrated 
with a Software Development Process 

3.2  SOFTWARE DEVELOPMENT APPROACH 
ChannelTech uses a tailored version of the TASC Software Process to support the 
development of software used for conducting experiments and for demonstrations. This 
software process (see Figure 1-2) is integrated into the R&D Process using the following 
build cycle: 

• Design and Develop Software Modules 

• Integrate and Test Software 

• Prepare for Demonstration 

• Conduct Demonstration. 

Upon defining a research proposal, there is generally a need identified for the 
development of software that will demonstrate empirically the ideas supporting the 
research objective. Most of the software developed under ChannelTech instantiates a 
particular channelization algorithm. The protocol requirements for this software are 
usually expressed most effectively as pseudo-code or use cases demonstrating how the 
algorithm should operate. Agreement on these requirements by members of the 
ChannelTech team begins the software development process. 

The software is developed to yield an experimental implementation that will be examined 
through exercising the ChannelTech prototype under controlled conditions.  Often these 
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controlled conditions also involve integration with external components that provide 
functionality outside the scope of ChannelTech. The software is verified by conducting 
several calibration trials to determine whether the results obtained agree with those 
developed during related analysis and/or simulation. The verified software 
implementation supports the Conduct Experiments process within the R&D Project 
Process. 

Based upon the results of the experiments and the customer's schedule of meetings with 
Principal Investigators, the software may be enhanced with a graphical display or other 
mechanisms to provide a demonstration of the concepts developed toward meeting the 
research objective. 

After conducting experiments, improving the protocol algorithms, and completing an 
analysis of the results, we draw conclusions and write the specification describing the 
algorithm. We will also deliver/distribute the software prototype outside of TASC, per 
contractual requirement. 

10 
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4. PROBLEM FORMULATIONS AND DEFINITIONS 

4.1     OVERVIEW 

Achieving mission-critical situational awareness through information dominance requires 
the timely and efficient delivery of information in response to changing conditions. 
While programs such as BC2A and BADD have demonstrated the technical feasibility of 
information management and dissemination (IDM) and constructed an architectural 
framework, they have only begun to address the research issues necessary to achieve its 
full potential. The ChannelTech research investigates the techniques for improved 
resource optimization in the presence of constrained network and end-host resources. 

For efficiency, delivery is performed using multicast whenever multiple users need the 
same data. Determining that multiple users need the same data (and hence that there is an 
opportunity to exploit multicast) can be accomplished by looking for overlaps in two or 
more user profiles. From a mathematical perspective, user profiles constitute sets in 
multi-dimensional space, and determining overlaps between user profiles is equivalent to 
computing set intersections: non-empty intersections provide multicast opportunities. 

An obvious problem arises immediately in that for N sets (user profiles), there are 2 
unique subsets that can be constructed from intersections of a given user profile set (or its 
complement) with each of the other user sets. Hence even for a modest number of users 
(say, 150), an enormous number of subsets (2150) must be evaluated to determine if, and 
to whom, the data should be multicast. The exponential relationship of the number of 
regions to the number of subregions is depicted in Figure 2-1 for a three-user case. 

If only because explicit enumeration of a user base of this size exceeds the addressing 
range of current generation processors, direct approaches for assessing multicast 
possibilities are intractable. From a practical perspective, the problem is far worse: the 
number of possible multicast addresses that can realistically be supported by a network is 
more on the order of 214 or less. Hence solutions must be developed for mapping the 
enormous number of potential multicast sets into a much smaller number that are in some 
sense optimal. 

11 
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Figure 2-1: Construction of the Set of User Information Need- 
Intersections and Corresponding Encoding for a Three-User Problem 

4.2     MATRIX FORMULATION 

The channelization problem can be recast mathematically in a number of different ways. 
For example, consider the following very simple, abstract model of an information 
dissemination system: There are N distinct information sets that are the a-priori 
decomposition of the M user requests into the disjoint subsets as described above. 
Consequently, each of the M users wants some collection of those sets. Let A be an M x 
N matrix, called the user request matrix, whose rows represent users and whose columns 
represent the decomposed information sets. If user i wants information set j, then the ij- 
th element of A is one, while if user i does not want information set j, then the y-th 
element of A is zero. Analogously, we define the channelization matrix, C, as a 0-1 
matrix with the y-th element being one if and only if information set j is carried on 
channel i. 

12 
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Figure 2-2: Example Solutions for Matrix Formulation 

When formulated in this fashion, the channelization problem is similar to a mixed-integer 
linear optimization problem. For example, if the subscription matrix, S, is another 0-1 
matrix such that the ij-th element corresponds to the i-th user subscribing to the y-th 
channel, then we are interested in finding solutions to 

CS>A (0.1) 

that satisfy various constraints on the dimensions of C and other internal properties of C. 
An example is shown in Figure 2-2. 

Because of the speed of simple matrix comparisons, this formulation has proven valuable 
in modeling many of the channelization algorithms; particularly as the number of 
requests becomes large. The software package Cpcrib is based upon this representation 
and is discussed in detail in Experimental Software Description [6]. 

4.3     STATE-SPACE FORMULATION 

The channelization problem can also be formulated as a series of state changes based 
usually on the previous state alone. To see how this can be accomplished, we begin by 
observing that the 0-1 row of the user request or channelization matrices defined 
previously can be converted to an integer. For example, in the previous figure, channel a 
corresponds to an integer value of 23 (i.e., 10111) while channel ß corresponds to a value 
of 24 (i.e., 11000). Thus, the current state of the system at any given time can be 
described by a list of integers that correspond to the various channel and/or profile 
definitions. 

13 
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Figure 2-3: State Transitions for Channels Defined in Section 2.2 

State transitions occur when a new information request is submitted. This is shown in 
Figure 2-3 for the channels defined in the previous section. For example, consider the 
bold line through the diagram. When user A submits his information request 
corresponding to regions 10101 with integer value 21, then a single channel is created 
with the same definition. The corresponding channel is shown as the state. Next, user 
B's request for regions 00110 (i.e., 6) generates an aggregated channel that is the union of 
their individual interests. The definition of this single channel is 23 and corresponds to 
channel a presented earlier. Finally when user C makes his final request for information, 
a second channel is constructed corresponding to channel ß. Thus the final state is a pair 
of integers. 

The advantage of this representation is that given the probability of being in a particular 
state at a given time along with the probability distribution for various transactions, the 
probability of being in each of the states can be calculated for all future submissions. 
From this, information such as the expected number of channels and standard deviation 
as a function of the number of information requests can be calculated. This approach is 
the basis for the RMEStateSpace utility developed as part of ChannelTech and described 
in Section 3.2.2. 

4.4     CHANNELIZATION PERFORMANCE METRICS 

Quantifying the characteristics of various channelization algorithms is critical to 
performing a comparative analysis. In this section, we define key metrics in two 
categories: Channelization Algorithm and Software Performance Metrics. Specifically, 
in Section 2.4.1, Channelization Algorithm Metrics (CAM) describe and characterize the 
salient performance of a channelization algorithm without regard to how the algorithm 
was implemented. Then, Section 2.4.2 defines the Software Performance Metrics 
(SPM) and how they measure the effectiveness of a particular implementation of the 
algorithm. 

4.4.1   Channelization Algorithm Metrics Definitions 
In this section we define each Channelization Algorithm Metric as represented in the 
experiments and the RIME Log Analysis Tool. 

14 
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Channel Count 
Channel count is the number of channels, nc, constructed given a certain set of 

information requests and is usually expressed as a function of number of requests, nr. As 

we will see later, 

• With the no aggregation algorithm, the number of channels always equals the number 

of requests (nc = nr). 

• With the containment algorithm, nc<nr. 

• With the direct decomposition, nc>nr. 

In this fashion, the channelization count measures the load imposed on the network in 
terms of the number of channels that need to be supported. 

Experimentally, the number of channels depends upon, not only the number of requests, 
but also the definitions of those requests. Therefore, we will often consider the statistics 
about the count such as its expectation and deviation given a particular distribution of 
input requests. 

Redundant Load 
In addition to the network load due to the number of channels constructed, we need to 
measure the increase (or decrease) in the volume of data transmitted as a result of 
channelization. To measure this, we define the redundant load as the amount of data that 
is transmitted separately to multiple users. 

We define the redundant gain as 

a 1=1 j=i+\   
n,     n, 

25>(E;nz?;) 
i=l ;'=i+l 

where Ec and Er are the exchange characteristics for the channel and request, 
respectively. The density function, p{...), measures the load of a particular volume of 
data. Thus, the numerator of this equation measures the volume of duplicate data that is 
sent on separate channels while the denominator measures the volume of duplicate 
requests for data. If the channels are orthogonal (i.e., the channels do not overlap) then 
the gain is zero. However, a gain of zero does not imply that the channels are orthogonal 
— rather the measure of the overlaps may simply be zero. 

Often it is difficult to define a-priori the density of information for the various regions of 
interest. For this reason, we define the approximate redundant gain as 
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nr     nc 

G = I=1 j=i+\   

"r        "r 

where the indicator function, 1(...), replaces the density function and has a value of one if 
the two exchange characteristics intersect and zero otherwise. Unlike the previous 
equation, this is zero if and only if the set of channels is orthogonal. 

Subscription Count 
Whereas the channel count and redundant data measure the load imposed on the network, 
the subscription count measures the number of channel subscriptions necessary to satisfy 
a particular request. Let us define S(i) to be the set of channel subscriptions to satisfy 

the i-th request. Then 

n,(i) = \S(i)\ 

where |S(i)| is the number of elements in SO')- 

Excess Data 

Analogous to the redundant gain that measures the amount of information that is 
transmitted redundantly, the excess gain measures the amount of data that a particular 
user receives that they did not request. Therefore, for the i-th user we define the excess 
gain as 

E'eSd)   
Ge(i) = - 

P(E;) 

The numerator of this equation measures the volume of data that was received but not 
requested whereby the denominator normalizes the result according to the total volume 
requested. We also define 

Ge(i)=  2 l(EcnE;) 

when the density of the information is not known a-priori. This second definition has the 
added property that it is zero if and only if the current channel set is exact for the 
specified user. 

4.4.2  Software Performance Metrics Definitions 
Software Performance Metrics (SPM) measure the effectiveness of the implemented 
Channelization Algorithm. These metrics include the following: 
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Processing Time and Maximum Arrival Rate 

Memory Utilization and Memory per Request 

End-to-end Delay and Maximum Arrival Rate 
The end-to-end delay is defined as the amount of time required for a request to be 
processed and the corresponding channels defined. We define the maximum arrival rate 
as the maximum steady-state arrival rate of information requests that can be handled 
without error. In the absence of internal queues within the software, the maximum arrival 
rate is the inverse of the end-to-end delay. 

Memory Utilization and Memory per Request 

The memory utilization is defined as the amount of memory consumed during the 
execution of a channelization algorithm. For example, memory may be consumed due to 
internal hash tables and data caching used to reduce the end-to-end delay. 

The memory per request is simply the memory consumption divided by the number of 
requests in the system. This provides a first order approximation to the memory 
requirements necessary to support a particular number of requests. 

4.5     ALGORITHM DEFINITIONS AND SUMMARY 
CHARACTERISTICS 

The following sections define the algorithms explored as part of ChannelTech and 
summarize many of the key results. Additional details for the algorithms and their 
properties can be found in the papers contained in Appendix B. 

4.5.1   Trivial Algorithms (No Aggregation and Full Aggregation) 
Three factors impact channelization algorithms: the set of subscription channels; the 
assignment of sources to channels; and the number of channels constructed over the 
network. Correspondingly, there are three trivial channelization algorithms defined 
below. 
• No Aggregation (Receiver): Make a separate channel for each user containing 

precisely the information the individual user wants. Each user subscribes solely to his 
unique channel while each source feeds the channels that intersect its contents. This 
method may overwhelm the information system by sending many information 
products repeatedly, but it eliminates the unwanted information received by the users. 
Destination Transfer Agents will not have to filter out any information that is 
received. Rather the data that is received will be exactly what a user has asked for. 
The number of subscribed channels is always one. This approach is roughly 
equivalent to having separate information stove-pipes for each user. 

• No Aggregation (Source): Make a separate channel for each source containing 
precisely the information that the source has. Each user subscribes to the channels 
that intersect their information interests. In this case, no information is sent 
redundantly but a user may receive excess information. Source Transfer Agents may 
have to transmit the same information item on multiple Channels, when two or more 
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users request the same type of data. The number of sources feeding a particular 
channel is always one. This approach is closer to the broadcast model where 
particular predefined channels carry news, sports, weather, and other interesting 
content. Users select the content that is most relevant to their needs. 

•    Full Aggregation: Make one single channel containing all the information products 
wanted by every user and have every user subscribe to that channel. This may 
overwhelm some users with unwanted information, but again avoids any redundant 
transmissions. In this case, the number of channels is always one. 

In each case, the complexity of the algorithm is independent of the number of previous 
requests. 

4.5.2 Direct (or Full) Decomposition 
This approach is the basis for the analysis described in the introduction of this section. 
Specifically, the set of information requests is decomposed into its smallest set of disjoint 
subsets that cover the user's requests. Then, there is precisely one channel for each 
desired disjoint information set and these are singlecast or multicast to the users who are 
interested in them. This method has the advantage of minimizing both the amount of 
unwanted information and total information sent. 

Unfortunately, as noted previously, the number of channels grows exponentially with the 
number of requests and is therefore not practical for large numbers of user requests. 
However, as described in Utility-Based Management of Information Dissemination [2], it 
is the basis for all orthogonal channelization algorithms and the fundamental construct for 
many of the mathematical formulations. 

4.5.3 Containment Algorithms 
In order to make use of multicast technologies (in an effort to reduce the amount of 
redundant data transmissions) it is desirable to define Channels that satisfy more than one 
Information Request. One approach taken to achieve this goal is the development of the 
Containment Channelization Algorithm. 

The containment algorithm is governed by the comparison of the data regions associated 
with the existing channels and the current request. We refer to these data regions as 
Metadata Space Regions (MSRs) or Exchange Characteristics as they provide an abstract 
description of the information content. If the MSR of a received request is completely 
contained within the MSR of an existing channel, then the request is aggregated into the 
existing channel. Thus, the user's desired information is a subset of the information 
transmitted over the specified channel. Alternately, if the user's request covers a 
particular channel's definition, then the channel definition is updated to cover the broader 
scope. When no existing channel completely contains the request, a new channel is 
created. 

The motivation for the containment algorithm is that users' requests are significantly 
similar and, therefore, can benefit from this reduction of channels without overloading 
any particular user with significant excess information. This assumption is motivated by 
the observation that WWW traffic satisfies a Zimpf distribution.   On the other hand, 
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when user's requests are uncorrelated and are not contained, then an unlimited number of 
channels may result similar to the trivial No-Aggregation (Receiver) algorithm. By the 
same token, any user submits a sufficiently general request for information, then the 
request may cover the entire set of channels and behave like the trivial full aggregation 
algorithm. 

We can also define the "containment algorithm" using the matrix formulation presented 
earlier. If all the requested information products in row i are also requested in rowy, then 
row j is said to contain row i. If any element of row i is one, while the corresponding 
element of row; is zero, then rowj does not contain row i. Two equal rows will contain 
each other, except that one element of the set will not be marked as such. An all-zero 
row will be contained by any other row so it may be disregarded. 

The savings in information sending depends on the user information requests and is 
delineated in detail in Examining the Containment Algorithm [3]. 

4.5.4 Reverse Containment Algorithms 
Whereas the containment algorithm constructs channels using the definition that covers 
the other requests, the reverse containment algorithm constructs channels based on the 
channel that is being contained. Specifically, given a request for a subset of information 
that is currently supported on an existing channel, the reverse containment algorithm 
splits the channel into two disjoint channels: one for the desired subset and a second for 
the remaining information. 

Channel reduction occurs when information requests can be composed from the set of 
existing channel definitions. Then, after the channels that are contained within the 
request are removed, the remainder is empty so no new channel is constructed. Thus, this 
algorithm is based on the assumption that user requests are commonly composed of a 
small set of aggregate components similar to the direct decomposition. 

When this algorithm is tested on randomly constructed problems that have fewer 
information regions than users, the algorithm initially behaves by assigning one-channel- 
per-user, but eventually results in a small number of disjoint components. This is 
especially true, if the probability that a given user requests a given information region is 
either low or high. When there are many more information regions than there are users, 
the number of containers becomes small, and the reverse containment algorithm does 
nothing. 

4.5.5 Clustering Algorithms 
Further reductions in the number of channels may be accomplished by an algorithm (or a 
group of algorithms) called "clustering" algorithms. In this concept, when two or more 
user requests differ by little (perhaps as measured by the information density) each of 
them is assigned to a channel that covers them all, a channel made by unionizing the 
information regions in the nearby requests. Algorithms of this type produce results that 
depend on the precise ordering of comparisons and replacements. Clustering algorithms 
maintain the one-channel-per-user result. Planned as a future task, exploration of this 
class of channelization algorithms was not explored in detail. 
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5. STATIC CHANNEL SOFTWARE 

5.1 INTRODUCTION 

The ChannelTech software architecture is based on the BADD software architecture. 
The software developed under ChannelTech extends the functionality provided by BADD 
in key areas identified through the research. The primary objective of the ChannelTech 
software is to capture crucial measurements and experience to assist with the 
development of optimized Channelization Algorithms. As a result, this software is 
designated a prototype and has minimal operational requirements. With the exception of 
certain cross-contractor integration to support system-wide experimentation, there is no 
identified operational setting for this software. 

5.2 EXPERIMENTAL SOFTWARE 

5.2.1 Monte-Carlo Simulation (Cpcrib) 
An experimental test program named Cpcrib was written to examine potential 
channelization algorithms. The program was written for a PC using MS Visual C++. 
While this flexible test program was not envisaged as deliverable software and is not a 
part of the prototype ChannelTech software, it is provided. An attached paper entitled 
Experimental Software Description [6] gives details of the software's construction and 
use. In addition, the program code is reasonably well documented internally. 

5.2.2 State-Space Analysis (RIMEStateSpace) 
Evaluation of channelization algorithms based on the state-space representation described 
in Section 2.3 was accomplished using an experimental Unix test program named 
RIMEStateSpace. This program: 

1. Calculates state-space transitions and saves them to a file; 
2. Calculates statistics for a given probability distribution of information requests; 
3. Generates data for plots as a function of time. 

The key control parameters are listed below. Additional options can be listed using the 
help option (-h or -H). 

Table 3-1 - Key Control Parameters for RIMEStateSpace Program 
-a <algorithm> 

-d <distribution> 

Channelization algorithm to use. Available choices are 
none (for no aggregation), single (for full aggregation), 
containment, and direct.  
The distribution of information requests. Supported types 
include: 
• UniformO: Each subregion of the decomposition has 

the same probability of being selected. Selecting no 
regions is permitted. 

• Uniform 1: Same as UniformO except each request 
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must select at least one region. 
-r <number> The number of subregions after the decomposition. This 

specifies the size of the bit vector described in Section 
2.3. Numbers larger than 5 typically result in a 
prohibitive number of states to track. 

-i <number> The number of iterations to perform. When combined 
with the various output options (not listed), key statistics 
can be generated as a function of the number of requests 
in the system. 

In addition, the program can dump a file that describes the state-space given a particular 
number of regions. Subsequent runs of the program can load this file and thereby reduce 
the time required to process results. Alternatively, users may construct these files 
manually to represent unique algorithms. 

The state-space file is a text file consisting of two columns. The first column is a list of 
the channels' definitions and the added information request definition separated by 
colons. The second column is reduced list of channel definitions based on the algorithm. 
Both columns are sorted in numerical order with redundancies removed. For example, 
some of the valid state transitions from Figure 2.3 of Section 2.3 are 

• 6:24: 6:24:   Given one channel sending regions 2 and 3 (i.e., 110 or 6) and a 
request for regions 4 and 5 (i.e., 11000 or 24), the result is two 
channels with the same definitions. The same holds if the original 
channel had definition 24 and the request had definition 6. 

• 6:21:24:    23:24: Given two channels with definitions 6 and 24, respectively and an 
input request with definition of 21, the resulting state is two 
channels with definitions 23 and 24. 

5.3      STATIC CHANNEL OPERATIONAL SOFTWARE 

The initial ChannelTech software supports 2 of the Channelization Algorithms previously 
discussed, the Trivial Algorithm and the Containment Algorithm. Additional 
Channelization Algorithms may be easily integrated into the ChannelTech Software by 
adhering to a well-defined algorithm interface. 

The software CD is submitted under separate cover and includes documentation. 
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6. RESULTS AND DISCUSSION 

This section investigates the differences and similarities of the various algorithms and 
their implementations using the metrics defined in Section 2.4. Additional details about 
the containment algorithm can be found in [3] [5]. Table 4-1 summarizes the theoretical 
and experimental results in terms of the Channelization Analysis Metrics (CAM) defined 
in Section 2.4. 

Table 4-1 - Comparison of CAM Values 
CAM No 

Aggregation 
(Rev) 

Full 
Aggregation 

Containment Direct 
Decomp. 

Channel Count (nc) Min nr 
1 1 

»r 

Max nr 
1 

»r 
2"' -1 

Mean nr 
1 see Fig. 4-1 (*) 

Std 0 0 see Fig. 4-1 (*) 

Redundant Gain (Gr) 
Max 1 0 1 0 

Mean 1 0 see Fig. 4-2 0 

Std 0 0 see Fig. 4-2 0 

Subscription Count (ns) 
> 

Min 1 1 1 1 

Max 1 1 1 2"' -1 
Mean 1 1 1 (*) 
Std 0 0 0 (*) 

| (*) Neither closed-form expression nor sample experimental results available. 

6.1      CHANNEL ALGORITHM MEASUREMENT RESULTS 

Validation of the algorithm characteristics was accomplished through a series of 
experiments and benchmarks performed using the simulation and operational software 
described in Section 3. This section discusses these results. 

6.1.1   Uniform Distribution 
A set of 18 trials was performed whereby information requests were generated uniformly 
over a set of exchange characterization attributes and submitted at a fixed rate between 
five to fifteen seconds per request. Each exchange characteristic was randomly generated 
over three data types (i.e., image, text, video); twenty-six keywords; two access methods 
(i.e., HTTP or FTP); and optionally stationary targets and/or ATO products. For each 
request, the user's information needs were selected randomly from these values and 
submitted to the system. In addition, all the attributes with the exception of keywords, 
could be skipped implying that the user did not care about the value for that attribute. 

Figure 4-1 shows the channel count as a function of the number of information requests 
for the containment algorithm using both the experimental testbed and the Monte-Carlo 
simulation.   Analogous to the trivial receiver-oriented trivial algorithm, the number of 

22 



Litton 
TASC  

channels grows linearly with a slope of slightly below one channel/request for small 
numbers of requests. That is, each request results in a new channel since the likelihood 
of overlap is small. For example, for the 18 trials, there was an average of 9.37 channels 
after 10 requests. For large numbers of requests, the containment algorithm approaches a 
small set of orthogonal channels that cover the other requests. In this case, the limiting 
value is 26 channels corresponding to each of the letters in the alphabet. After 1000 
requests, the experiment yielded an average of 32 channels over the 18 trials. In the 
Monte-Carlo simulations, we see that the expected number of channels is 26.2 after 2000 
information requests. Correspondingly, the standard deviation of the mean decreases as 
well. For example, the experimental standard deviation at 1000 information requests is 
5.86 compared to a standard deviation of 10.37 at curve's peak. 

In producing a set of orthogonal channels as the number of requests grows, the 
containment algorithm reduces the amount of redundant data transmitted. This is shown 
in Figure 4-2. Like the previous plots of the channel count, the number of channels that 
overlap initially rises as the algorithm behaves similar to the trivial receiver-oriented 
algorithm, peaks, and then decreases as it settles into a set of disparate channels. 
However, the peak of these curves in both theory and experiment are shifted from the 
peaks in the number of channels. Note also that, when compared to the overlap in the 
requests, the approximate redundant gain decreases exponentially with the number of 
information requests. The reason is that while the channel overlap decreases 
exponentially, the request overlap increases exponentially. Fitting the theoretical values 
to an exponential curve reveals the approximation 

Gr=(0.1072)^004K 

with a coefficient of determination of 0.9879. 

6.1.2  Lantica Scenario 
As part of the PA&I investigation, an operational scenario was constructed designed to 
demonstrate the functionality of the AIC components. Designed to operate against the 
limited tagging associated with the connection-oriented AIC layer, this scenario was 
limited to nine different requests for information.3 The scenario also included 
information about the utility of the requests along with the timing of the various 
submissions. From this data, the Lantica experiment was performed against the testbed 
and the results are shown in Figure 4-3. 

As can be seen, the system quickly settled onto the five orthogonal channels with 
occasional drops to four channels when there were no active requests for Warning data. 
Furthermore, early during the simulation when the number of requests are small, the 
number of channels equals the number of requests as noted in the previous section. 

3 Of these requests, only one (Intelligence : All Source) covered any of the other requests. Specifically, the 
four specific types of Intelligence data were assumed to be subsets of the All Source requests. When taken 
as a whole, this implied that there were only five orthogonal requests (i.e., 9 - 4). 
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Figure 4-1: Number of Channels for the Containment Algorithm 
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Figure 4-3: Number of Channels as a Function of Time for Lantica 

6.2  SOFTWARE PERFORMANCE MEASUREMENT RESULTS 
The processing time and memory utilized is summarized in Table 4-2 and shown in 
Figure 4-4. These results are based on a set of uniformly distributed information requests 
as described in the previous section. 

Table 4-2 - SPM Metrics for Operational Software 
SPM No Aggregation (Rev) Containment 

Processing Time Mean 383 msec 764 msec 
Min 32 msec 27 msec 
Max 94.671 msec 44.070 msec 
Std 4.188 msec 2.255 msec 

Memory per Request Mean 45 kbytes 
Min 15 kbytes 
Std 79 kbytes 

During the trials, it was noted that the processing delay between adding an information 
request and removing an information request was asymmetric. That is, removing 
requests took more time than adding requests. One reason is that if the removed 
information request was the request that contained multiple others, then its removal could 
result in splitting a single channel into smaller, non-contained channels. This calculation 
required more comparisons that adding an information request. 
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Another observation is that the time processing time for the no aggregation algorithm is 
about half the time required to process the containment algorithm. This result is not 
surprising in that no aggregation does not require any comparisons between various 
requests. 

Examination of the memory consumed as a function of the number of profiles in the 
system was approximately linear. This allows for easy estimation of the amount of 
memory required to support a particular peak number of information requests. In 
addition, the memory consumed is significantly less than similar measurements taken on 
version 4 of the BADD IDM Core. In all, the improved framework reduced the memory 
from approximately 250K bytes/profile to 45 kbytes/profile. Note that the times reported 
here are slightly longer than those required by the previous version of the BADD Core. 
This is due, in part, to the more flexible architecture as well as the additional support for 
the containment algorithm that was not present in BADD. 
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7. CONCLUSIONS 

Early analysis of the channelization problem reveals both the complexity and early 
characteristics of the problem. In its simplest form, the channelization problem grows 
exponentially with the number of requests in the system. Furthermore, non-linearities 
inherent in the problem preclude the use of simply iterative approaches that result in local 
minimums. 

Despite these difficulties, the potential benefits of channelization can be noted in both the 
theoretical and experimental analysis performed to date. For example, substantial 
reductions in the number of channels hosted within the network as well as the load 
imposed due to redundant transmissions can be noted using the simple containment 
algorithm. This report explored a number of possible algorithms and developed an 
infrastructure for analyzing their performance. This included trivial algorithms, 
containment, reverse containment, and the direct (or full) decomposition. 

Additional benefits may be obtained by recognizing many of the characteristics of the 
surrounding environment. The Lantica scenario demonstrated a military scenario where 
the commonality between user's information needs was very high. As a result, only four 
channels were necessary to support the user's needs. More generally, information 
requests are often Zipf-like and opportunities for optimizing algorithms by leveraging 
this need to be explored. 

Many of the software artifacts developed under the ChannelTech project have been 
transitioned to other projects and shall be included in a future DII/COE GCCS release as 
part of the IDMDom segment. This report also provides a central repository for the 
technical artifacts to support future investigations necessary to provide next-generation 
information management services. 
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9. ACRONYMS 
AIC Utility-Enabled Networking (formally Agile Information Control) 
AICE Agile Information Control Environment 
AEI Information-Enabled Networking (formally AICE Enhanced Information 

Management) 
AITS/JPO Advanced Information Technology Systems Joint Program Office 
BADD Battlefield Awareness and Data Dissemination 
BC2A Bosnia Command and Control Augmentation 
CAM Channelization Algorithm Metric 
DARPA Defense Advanced Research Projects Agency 
DII/COE Defense Information Infrastructure Common Operational Environment 
FACB Functional Architecture Control Board 
FTP File Transport Protocol 
GCCS Global Command and Control System 
HTTP Hyper Text Transport Protocol 
IDM Information Dissemination Management 
IP Internet Protocol 
IPM Information Policy Management 
ISR Information Space Region 
ISO Information Systems Office 
ITO Information Technology Office 
MSR Metadata Space Regions 
JPO Joint Program Office 
PA&I Performance, Analysis & Integration 
QOS Quality of Service 
RIME Real-Time Information Management Environment 
ROI Region of Interest 
SECB System Engineering Control Board 
SPM Software Performance Metric 
TBD To Be Defined 
TCP Transport Communication Protocol 
UDP User Datagram Protocol 
UML Unified Modeling Language 
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APPENDIX A - RIME SOFTWARE USER MANUALS 

This appendix contains details on the execution of the primary software products 
generated as part of ChannelTech. 

As the RIME Editor and RIME Server are based upon the BADD software architecture, 
only the differences in usage between the two are discussed in this appendix. For full 
details about the user interface and server installation and usage, please see the latest 
BADD/TDM DII/COE documentation. 

31 



Litton 
TASC 

Al     RIME SIMMULATION TOOL 

Complementing the research, RIMESimTool allows users to prototype channelization 
algorithms and visually explore the results prior to implementation within the RIME 
Server. A Screenshot of the tool is shown in Figure A-l. This tool is authored in Perl/Tk 
ver 5.0 and has been demonstrated on both Solaris and NT platforms. Definitions of the 
supported channelization algorithms can be found in the corresponding research section. 

TÄSC7ÜTTÖN- RIME Chänriellröloh simulationTool (Unix) 

Static Channelization 

Select Algorithms 

No Algorithm 

Single Channel 

Direct Decomposition 

-J. RI 

Select Plot 

v Channel Court 

♦  Excess Data 

^ 

Step       Hay       Stop 

This toot aftows users to rapidly 
prototype channelization algorithms and 
explore thee* characteristics prior to rufl 
tmplementallon within the RIME 
architecture. ^ 

Figure A-l: RIME Simulation Tool Interface 

A. 1.1 User Interface 
The left side of the tool contains controls for selecting the type of simulation, algorithms, 
and information to display. The elements of the control panel from top to bottom are as 
follows: 
•    Top button: Clicking this button opens a file browser allowing the user to select the 

simulation to execute. Format and construction of simulations are described in 
Section A. 1.2. 
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• Select Algorithm Frame: Within this frame is a list of all of the algorithms 
supported. Selecting one of these buttons causes alternate panels to use the chosen 
algorithm. The name of the algorithm assigned to each visualization panel is shown 
at the top of the panel. In Figure A-l, static channelization and containment were 
selected respectively. 

• Select Plot Frame: Within this frame, users can choose the type of information that 
they would like plotted during the simulation in the plot panel. 

• Reset Button: This button stops the simulation and resets it to the beginning. 

• Step Button: Executes a single command within the simulation file. 

• Play Button: Causes the simulation file to be executed. 

• Stop Button: Stops a simulation that is being played. 

• Quit Button: Quits the application 
• Information Panel: This region displays various information as the user selects 

different parts of the visualization panels or plots. When a component of the 
visualization panel is selected, this region shows the definition of the selected item. 
When a plot is selected, the statistics associated with the plot are shown. 

The visualization panels allow users to see the state of the system as a function of time. 
Two views are provided as part of this display. The top view (shown in black) displays 
information requests in red, channels in green, and advertisements in blue. The outline 
represents the region of interest for each of the respective elements. For example, we can 
see that the region of interest for the advertisement in the left visualization panel (blue) 
intersects four channels. 

The lower region of the visualization panel shows the connections between the various 
definitions. From left-to-right, the columns of boxes correspond to advertisements, 
channels, and information requests respectively. For example, we can see that the single 
advertisement associated with the static channelization algorithm intersects four channels. 
Therefore, four lines emanate from the box in the advertisement column to four channel 
boxes in the middle column. In the same fashion, we can see which channels the 
information requests have subscribed to. 

In both panels, these various components can be selected by clicking the mouse on the 
desired item. When selected, the item will become bold and any relevant additional 
information will be displayed in the information panel. 

A. 1.2 Simulation File Format 
Simulation files consist of a series of commands that can be executed by the tool during 
operation. Any number of blank lines or comments (denoted with #) can be included in 
the file for readability. 

Regions of interest (ROI) are specified as ordered pairs of integers on a fixed rectangular 
grid. These ordered pairs are represented on the visualization panel as complex 
polygons. Semi-colons may separate multiple ordered pairs to denote complex regions. 
Furthermore, a dash between two values means to select all points between the specified 
values as well as the end-points. An example is shown in the Figure A-2. 
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Figure A-2: Regions of Interest are Specified as Ordered 
Pairs of Integers on a Fixed Rectangular Grid 

The commands that are supported are 

• Advert: <name> <ROI> 
Add or modify an advertisement corresponding to the name. The region of interest 
for the advertisement corresponds to the ROI. 

• Profile: <name> <ROI> 
Add or modify an information request corresponding to the name. The region of 
interest for the information request corresponds to the ROI. 

• Profile: <name> remove 
Remove the specified information request. 

• Profile: <name> random <type> <parameters> 
Generate a random information request of the given name. The type field defines the 
method to use in generating the information request. The parameters depend upon the 
type. Only 'uniform' distribution is currently supported. 

• Profile: <name> move x,y 
Moves the information request by the corresponding x,y amount. 

• Channel: <name> <ROI> 
Add or modify a channel corresponding to the name. The region of interest for the 
channel corresponds to the ROI. 
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A.2   RIME LOG ANALYSIS TOOL 
Figure A-3 shows the RMELogAnalysis tool. This tool allows users to examine the 
state and performance of the RIME Server's channelization algorithms. 
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Figure A-3: RIME Log Analysis Tool Interface 

The tool is divided into four key regions: display controls, plot, state graph, and 
information. These are located on the far-left, middle-top, middle-bottom, and far-right 
respectively. In addition, there are four buttons at the bottom of the tool. The "J-Log 
Select" and "C-Log Select" buttons allow the user to navigate to the two log files 
necessary for the analysis. The selected log files are shown on the left. Pushing 
"Analyze" causes the log files to be reexamined. Hence, while an experiment is in 
progress, the log files can be specified once and reanalyzed whenever the user wants to 
refresh his display to capture the latest system-state. The Quit button exits the tool. 

Display Controls 

The display controls on the far-left allow the user to select which plots to show in the 
plotting area and any special information in the state graph. The supported plots are: 

• Profile & Channel Count: Displays the number of information requests (i.e., profiles) 
and corresponding number of channels as a function of time. This option is selected 
in Figure A-3. 

• Channel Gain: The channel gain is defined as the ratio of the number of channels 
divided by the number of requests. 
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• J-Memorv: The amount of memory consumed by the channelization server as a 
function of time. 

• Delay: The delay from information request submission to when the final channel 
definitions and agent instructions are generated. 

The state graphs shows the relationships between the various source advertisements, 
channels, and information requests at a particular instance. Described in greater detail 
below, the following is a list of support graph options: 

• Orthogonality: This option allows the user to identify channels with information 
content that overlap. For example, a channel sending Korean information and a 
channel sending news would overlap as both would carry Korean news reports. 
Overlapping channels are shown in yellow. 

• Precision: This option allows the user to identify which subscribers to a particular 
channel are receiving excess information. For example, a user interested in financial 
news subscribing to a generic news channel would also receive information about 
sports and weather that are outside of his interests. Users receiving excess 
information are shown in orange. 

Below the state graph options, there are two buttons that allow the user to step the graph 
forward and backward in time. This also results in a time-bar on the plot diagram that 
represents the current position in time. For example, in Figure A-3, the time-bar is 
currently at 18:60:50 with the corresponding state diagram for that time shown at the 
bottom. 

Plot Region 

The plot region (shown in the top-center) shows all of the plots selected in the display 
controls as a function of time. Right-mouse-clicking on any of the plots causes detailed 
information about its statistics to be printed in the information area on the far-right. The 
selected plot will become bold to distinguish it from the other plots. In addition, the 
time-bar can be dragged to any particular time. 

State Graph 

The state-graph (shown in the bottom-center) displays the source advertisements, 
channels, and information requests at the time specified by the time-line. This is 
organized into three columns. The column on the left is a list of the various source 
advertisements. The number next to each box corresponds to the number of channels that 
this source is feeding. For example, in Figure A-3, there is precisely one advertisement 
that is feeding 29 channels. 

The middle column is a list of the channels. Each channel is being fed by any number of 
sources and has any number of subscribes. The number of sources feeding the channel is 
shown to the left of the box while the number of subscribing information requests is 
shown on the right. 

The right column is a list of the information requests. In this case the number of channels 
that the request is subscribed to is shown on the left of the box. 
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Like the plots, any box can be selected with a single mouse click and the resulting 
information is shown in the information region on the far-right. The selected box is 
outlined in bold. In Figure A-3, the information request shown in red is currently 
selected and its corresponding details shown on the right. This information request 
(named Profile982) is interested in stationary targets with the keyword "V." 

Double-clicking any box within the state graph highlights itself in blue and the boxes in 
the other columns that are connected in red or orange.4 Figure A-3 second channel from 
the top has been double-clicked. As can be seen, the single advertisement is the source 
for this channel and the three-colored information requests are all subscribed to this 
channel. 

Information Panel 

As described previously, the information panel shows key data corresponding to selected 
boxes in the state-graph or plots. 

1 Boxes will highlight orange only if the "Precision" option is turned on. 
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A.3     RIME EDITOR V1.0 

Figure A-4 shows the RME Editor tool. The tool is similar to the DII/COEIDM Editor 
(IDMEdt) but also allows users to specify utility functions using the small panel shown 
within the figure below. Details on the BADD editor usage can be found in [BADD99u]. 
This table is constructed as a list of regions that have constant utility value. Each row of 
the table corresponds to a specific set of QoS parameters that correspond to a particular 
utility value. Each element of the utility table is active so that selecting it will result in a 
pop-up enabling the user to choose from available valid values. 

v File   Mode   Options ■Help; 

New |    ^PBfeta |     Refresh j 

Profile Name:   sgAeia User croup: None(User 

Description: honest for Information vithin the SE rajicn of tei 

»HB <=™™* naa 
;=. I Data Type       [ /^Matches 

fijj I Geographic Location | /[ Intersects  

wMsmmiE!!B33Mfsmmsmf!masMiBi^swilPf!PS^!K 
5 ! I 1(1000.3001 in. 6.31 

[200,300] 

[50,100] 

K601 

OK    | Cancel 

Add Attribute Constraint 

Constraint Templates „ [    Browse Catalog | 

Submit Withdraw 

Figure A-4: RIME Editor Interface 
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A.4     RIME SERVER V1.0 
The RIME Server developed under AICE is based on the BADD Phase 2 Core Server 
version 4.3.6. Details on its usage can be found in [BADD99s]. This section discusses 
the user issues that are unique to the RIME Server. 

The behavior of the RIME Server is controlled in part by the configuration parameters 
specified in the file idmjServer.prp. During AICE, additional properties were added to 
allow for the seamless selection of the channelization algorithms. The following is an 
excerpt from this file along with additional comments. Comments are denoted with #. 

# 
# Property controlling the Channelization Algorithm used by Delivery. 
# This algorithm specifies how channels are constructed from 
# the profile definitions.  Only two algorithms are currently supplied. 

# 
# For no aggregation algorithm uncomment out the following line: 
# com.tasc.badd.de.NoChannelizationAlgorithm 

# 
# For the containment algorithm (CCA), uncomment the following: 
# com.tasc.badd.de.CCA 
# 
com.tasc.badd.de.channelizationAlgorithmName = 
com.tasc.badd.de.NoChannelizationAlgorithm 

# 
# Property controlling the Channel Selection Algorithm used by Delivery. 
# This defines how receivers select their channel subscription.  Currently 
# there are two algorithms. 
# 
# Used with the No Channelization Algorithm above.  This algorithm selects 
# channels whose originating id matches the id provided in the profile. 
# com.tasc.badd.de.NoChannelizationSelectionAlgorithm 

# 
# Used with the Containment Algorithm.  Selection is based on identifying 
# all channels that intersect the provided profile's exchange characteristics. 
# com. tasc. badd. de. ContainmentSelectionAlgorithm 
# 
com.tasc.badd.de.selectionAlgorithmName = 

com.tasc.badd.de.NoChannelizationSelectionAlgorithm 

# 
# Property controlling the comms component implementation. 
# There are three "MetaNet" interfaces that are provided as 
# part of the RIME Server.  They are... 
# com.tasc.badd.de.AlCInterface : Interface to AICE/AIC services 
# com.tasc.badd.de.Metanetlnterface : Interface to BADD MetaNet 
# com.tasc.badd.de.Waatslnterface : Interface to IDM WAATs services 

# 
# 
com.tasc.badd.de.commsComponentName = com.tasc.badd.de.AlCInterface 
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Real-time Information Management Environment (RIME) 
Brian DeCleene*, Sean Griffin, Gary Matchett, Richard Niejadlik 

Litton/TASC, Reading, MA 01867 

ABSTRACT 

Whereas data mining and exploitation improve the quality and quantity of information available to the user, there remains a 
mission requirement to assist the end-user in managing the access to this information and ensuring that the appropriate 
information is delivered to the right user in time to make decisions and take action. 

This paper discusses TASC's federated architecture to next-generation information management, contrasts the approach 
against emerging technologies, and quantifies the performance gains. This architecture and implementation, known as Real- 
time Information Management Environment (RIME), is based on two key concepts: information utility and content-based 
channelization. The introduction of utility allows users to express the importance and delivery requirements of their 
information needs in the context of their mission. Rather than competing for resources on a first-come/first-served basis, the 
infrastructure employs these utility functions to dynamically react to unanticipated loading by optimizing the delivered 
information utility. Furthermore, commander's resource policies shape these functions to ensure that resources are allocated 
according to military doctrine. Using information about the desired content, channelization identifies opportunities to 
aggregate users onto shared channels reducing redundant transmissions. Hence, channelization increases the information 
throughput of the system and balances sender/receiver processing load. 

Keywords: Information Management, Information Dissemination, policy, profile, channelization, resource optimization 

1.   INTRODUCTION 

Achieving mission-critical situational awareness through information dominance requires timely and efficient delivery of 
information in response to changing conditions. While improved sensor collection platforms and data processing techniques 
such as data mining enrich the depth and breadth of available information, they do little to ensure that the right information is 
delivered to the right users in a timely fashion to ensure overall mission success. Rather, most systems allocate and manage 
their resources on a first-come/first-served basis with users competing for the available resources. As a result, information is 
distributed according to the time of the user's request rather than the importance of the information that is being conveyed. 
Although recent developments in Quality-of-Service (QoS) guaranteed networks help alleviate this problem, these solutions 
do not consider how the connections are being used in determining how information is distributed to whom. 

During a crisis, the problem is further aggravated by the observation that the necessary information not only exceeds the 
available capacity of the network resources but is often generated by unanticipated sources. Hence, static doctrine that 
dictates a fixed chain of information dissemination can introduce costly delays and potentially misrepresent situations to the 
end user. By emphasizing the management of information over the management of connections, it is possible to allow the 
system to route information to the required users without a-priori knowledge of the source of the information. 

Information (or content-based) processing extends the traditional channel request/management services by exploiting details 
about the information that is intended to flow over the connection. Some of the services that are available under content- 
based processing include: 
• Smart Warfighter Profiling: Commonly, Warfighters have a clear understanding of their information requirements. 

Unfortunately, mapping these needs to network resources, such as bandwidth, is difficult since the end-user has only 
partial knowledge about what is available at the producer and how it will be disseminated. Under the RIME architecture, 
the Warfighter's profile only specifies information requirements and the importance of that data to the mission success - 
no a-priori end-user determination of necessary bandwidth is required. The RIME system, in concert with the producer, 
determines the network resources required to satisfy the Warfighter's profile and allocates these accordingly. 

* Correspondence: Email btdecleene@tasc.com; Telephone: (781 )205-7243; Fax: (781 )942-9507 



• Commander's Policy: When network resources are oversubscribed, the Commander needs to be able to define rules to 
ensure that resource allocations are consistent with overarching military doctrine and mission priority. Like profiling, 
these rules are expressed in terms of information requirements versus network connectivity. For example, a Commander 
may specify that data corresponding to a particular area of interest is mission-critical over other information requests. 
RIME uses this information to adjust the allocation of system resources accordingly. 

• Improved Information Throughput: Besides mapping information needs and policies into system resources, additional 
opportunities for increasing the dissemination of mission-critical information are available in the RIME architecture. For 
example, Warfighters often have common information needs. By identifying these shared needs and multicasting the 
data to all of the users simultaneously, the system can reduce the number of redundant transmissions. Similarly, under 
traditional information paradigms, users rely on a small set of statically defined repositories for their information needs. 
Unfortunately, this means that alternative sources of data are often missed or discovered late. Furthermore, users 
commonly identify changes and new data by polling at various intervals. This results in additional delays in accessing 
mission-critical information. By combining the Warfighter's information interests with the producer's summaries of 
available content, RIME identifies all sources of value and ensures that the desired content is routed to the user 
accordingly. 

This paper formalizes the notions behind these concepts and discusses how they are implemented within the RIME 
architecture. In the next section, the elements of a Warfighter profile are formalized along with their interaction with 
producer information to allocate system resources. Then, Section 3 defines the notion of Commander's policy and provides 
examples. Increasing information throughput through channelization is discussed in Section 4. In Section 5, the RIME 
implementation is discussed in detail. Finally, Section 6 compares this research to current systems. 

2.    WARFIGHTER PROFILES - METADATA SPACE REGIONS AND UTILITY FUNCTIONS 

Central to the architecture, the Warfighter's profile consists of two main parts: an expression of his information interests and 
the corresponding value of that information to the success of his mission. A Metadata Space Region (MSR) defines a user's 
information interests by specifying the subset of the set of all possible products that are relevant to the user. For example, a 
valid MSR is "intelligence traffic within central Bosnia." Rather than specifying specific products for dissemination, the 
MSR defines a criterion that is used to determine which current and future products the user desires. 

It is important to note that an MSR is an abstract representation of a set. Consequently, set operations such as intersection 
and union can be applied to various users' MSRs. For example, the intersection between user A's MSR "intelligence traffic 
within central Bosnia" and user B's MSR "signal intelligence traffic within Europe" is simply "signal intelligence traffic in 
Bosnia." That is, any signal intelligence product associated with Bosnia is of interest to both users. 

The second main part of a profile, utility, measures the "value" of the requested information to the success of the mission. 
Consequently, the information management system may trade-off system resources against various requests in order to 
maximize the utility of the delivered information. Formally, we begin by defining a utility function as a mapping of MSRs to 

the non-negative real numbers (i.e., the utility function for user x's information needs is UX(M) —> 5R ) such that the larger 
the number, the more critical the information is to the success of the mission. Some properties of this function based on the 
MSR's set operations include: 

• Information that has no value to the mission has a utility of zero — delivering this information does not increase the 
mission's ability to succeed. Information that is not within the range of the utility function should not be delivered to the 
user at all. 

• Expanding the information delivered increases the utility of the information. Mathematically, this implies if 

Mt^M2, then ux (M,) < ux (M2).' 

• If a request for information is divided into parts, then the utility of the original request equals the total utility of the parts. 

Specifically, if M, nM2=0, then ux (M,) + ux (M,) = ux (M, U M2) .2 

Note that this is a statement of the value of the information and not the processing load required use the information. Rather, the issue of 
information overload and end-host processing is addressed later during resource optimization. 
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Figure 1: RIME Mapping of User Needs to Network Resources 

By defining the utility function over the MSR, the user does not need to know a-priori the networking resources (e.g., 
bandwidth) that is required to deliver the information. Instead, the information producer defines a resource mapping of 

MSRs to resource requirements. Mathematically, p(M) —> Q where Q is the quality-of-service (QoS) required to 

support the specified MSR. Through this partnership between the user's utility function and the producer's resource mapping, 
users manage information rather than networks, and the RIME architecture optimizes the performance to maximize the value 
of information delivered. 

To illustrate how these concepts interact within the RIME architecture, consider three users with varying information needs 
as shown in Figure 1. On the left, each user has specified his individual information requirements and the value of the 
information to his mission. For example, User 2 (designated by the bold line) prefers high quality imagery but medium 
quality imagery will also suffice for his mission. Low-resolution imagery is not sufficient and therefore has no value to User 
2. The right side shows the producer's bandwidth requirements as a function of the information. Combining these two 
functions together, the system identifies the value of the system resources to each of the users (shown in the middle of the 
figure). Next, the system assigns resources to each of the users to optimize the total delivered utility as a function of the 
available bandwidth. The allocation map (shown on the lower-left) shows the resource allocations for each user. For 
example, with only 900 Kb/s of available bandwidth, User 1 receives less bandwidth than desired in order to allocate it to the 
more critical needs of Users 2 and 3.   If instead, only 400 Kb/s were available, then User 2 would not receive any bandwidth. 

: A more flexible generalization of this property is based on the concept of conditional utility where the utility is a function of the other 
information delivered. This allows users to account for the fact that some information has less value unless it is delivered with other 
information. 
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Figure 2: Example of Policy Applied to Utility Functions and Resulting Allocations 

3.    COMMANDER'S POLICY - UTILITY MODIFYING FUNCTIONS 

A problem with utility-based information management is that requests can be preempted by arbitrarily increasing the utility 
of one request to ensure that all other requests are blocked. This behavior may result in resource allocations that are counter 
to the overall mission success. Successful operational information management must take into account the fact that not all 
missions (and therefore users) are equally important at all times. For example, a request for information from a special 
operations team may take precedence over a similar request from a logistics group. RIME addresses these issues through 
policies that adjust user requirements according to military doctrine. 

A policy is defined as a rule that tailors a particular individual or group's information requests. Upon submission, the user's 
utility function is modified into a new utility function by all policies applicable to that user.   We shall denote this policy 

function as Oil °ux = Ct-(ux) —> uy.  Consequently, policy may modify the allocation of resources in the system.  Before 

illustrating, let us note the intuitive properties of these policy functions and their corresponding mathematical implications. 
• Once a policy is applied to a utility function, then that utility function is compliant with the policy.  That is, reapplying 

the rule a second time does not change the utility function. Mathematically, this implies that or; oai °ux= Cti °ux . 

• Policies     may     be     aggregated     into     master     policies. That     is,     policies     are     associative     — 

(aj o a.) o ak °UX = CCt ° (a- ° CCk ) ° llx.  For performance reasons, this observation allows the RIME architecture to 

pre-calculate aggregate policies for particularly dynamic users. Then, rather than repeatedly applying multiple policies 
to the utility function every time it changes, the aggregate policy can be immediately applied once. For this reason, an 
approach to pre-calculating aggregated policies is being considered as a technique for reducing the processing time 
required to resolve a request against policy. 

• Not all policies are equal.   For example, a policy of a CINC commander may take precedence over the policies of a 

battalion commander.   As a result, policies are not necessarily commutative (ai°CC1°ur ^ CC,■ °a, °ur). 
' J ■* J ' -*■ 

Given these observations, we can now recognize specific policy functions that comply with the mathematical formalism. 

Truncating — The simplest form of policy is to restrict any user from exceeding a particular maximum utility. Thus, 
wherever the utility function exceeds a specified threshold, it is truncated to the maximum allowed value. For example, let us 
consider the two left-most plots in Figure 2. In this case, all of the utility functions are truncated to a maximum value of four, 
causing User 2's utility function to be cropped. Then, using the parameters from the previous example to optimize the 
delivered utility, the quality of information delivered to User 2 is reduced, allowing User 1 to be allocated 300 Kb/s. Not 
only does this definition satisfy the properties outlined previously, we note that truncating policies are commutative. 
Truncating loses the details of the utility function for everything being truncated. In this case, although the user has explicitly 



identified that very high-resolution imagery is more valuable than high-resolution imagery, the truncated utility gives them 
the same value to the mission's success. As a result, no resources will generally be allocated to provide the higher quality of 
service since it consumes resources without increasing the total delivered utility. 

Scaling (or Ranking) — Unlike truncating, scaling policies preserve the shape of the original utility function. This allows 
certain users to receive preferential treatment without losing the relative value of the information to the Warfigher. 

Mathematically, if umin and «max are the minimum and maximum values of the utility function ux, then the scaling policy 

into the interval [a,b] is given by 

Sa,b°U,=(b-a) 
-"min 

."max 

+ a 

For example, reconsider Figure 2. On the right a scaling policy has been applied giving User 1 priority over Users 2 and 3. 
Specifically, User 1 is rescaled to the interval [3,6] while Users 2 and 3 are rescaled to the interval [0,3]. As a result, User 1 
receives additional bandwidth to meet his needs while User 2 receives no bandwidth. Again, it is easy to show that scaling 
policies adhere to the properties listed previously. Unlike truncating, however, scaling is invertible. 

Credit-based Policy — An example of a more sophisticated policy function is based on a credit-model where each user has a 
finite number of utility units that can be assigned to the various information types. As a result, a user can only increase the 
utility of a particular type of information by reducing the utility of some other information. Unlike truncating and scaling, 
this approach ensures that each user does not assign all information the highest allowable utility value. Mathematically, 
normalizing everything to k units, a credit-based policy is simply 

k- 

While truncation policies commute, generally this is not the case. Changing the order in which scaling or credit-based 
policies are applied changes the final policy-corrected utility function. As a result, policy requires a precedence rule that 
determines the order for applying policy. In the military, the command hierarchy provides the primary rule for determining 
precedence of policies as well as identifying which policies apply to which users. Specifically, each commander and 
warfighter in the RIME system are associated with a mission and unit within the command hierarchy. Each commander may 
designate the set of subordinate units that is subject to the policy. The policy is then applied to all users in those units. 
Policies from superior commanders take precedence over policies from their subordinates. While more complicated 
interrelationships are admissible within the RIME framework, this simple approach has proven sufficient for current military 
needs. 

Another observation is that setting a utility function to zero does not guarantee that the user does not receive the information. 
Rather, a zero utility only ensures that solutions that deliver extra data are not favored. As we will see in the next section, 
delivering information with zero utility to a particular user on a shared channel may actually increase the total system utility. 
To explicitly preclude certain solutions during resource optimization. RIME supports access policies. A sample access 
policy may prevent a user from using a particular satellite link or receiving data associated with a specific area of interest by 
changing the range of the utility function. 

4.    CHANNELIZATION 

In the previous sections, policy function tailored each user's information request by modifying the utility function. Then, the 
system allocated resources to maximize the utility of the delivered data. However, the RIME architecture extends the 
optimization a step further by comparing requests from different users and constructing shared data channels. By 
coordinating the placement of transmit- and receive-filters on shared multicast sessions, the system reduces the number of 
duplicate transmissions while simultaneously increasing the overall system utility. Based on studies of information requests 
on the Web, it has been shown that information requests commonly follows a Zipf-like distribution — a few products are 
desired by a large number of users and a small number of products are required by only a few users. [1][2] This observation 
provides the motivation for channel optimization. 

The benefits of channelization can be illustrated by reconsidering the example described in Section 2. Without 
channelization, the system allocates the 900 Kb/s to three different connections as shown on the left of Figure 3.   However, it 
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Figure 3: Channel Aggregation Increases Information Utility 

is clear that both users 1 and 2 are interested in receiving high-quality imagery. Therefore, by constructing a shared channel 
that contains the content of interest for these users, we are able to increase the overall utility as shown on the right. 

RIME constructs channels by examining the overlap in MSRs for the users' utility functions and constructing a set of channel 
utility functions. Examples of channelization approaches are illustrated in Figure 4. As may be seen, subscribing to a 
certain subset of channels can satisfy each user's information needs. Formally, given a set of users' utility functions, 

ut,...,uN , channelization constructs a new set of channel utility functions, v,,...,vA/ , such that for all points within each 

user's utility function, there exists at least one channel satisfying w,-(m) < Vj(m) . If there is no duplication in the content on 

any of the channels (i.e.. their MSRs do not overlap), we say that the channels are orthogonal. Similarly, if only data that a 
user is interested in (i.e., whose utility is non-zero) is delivered as part of his subscription, then we say that the channels are 
exact. On the producer side, if only information that at least one user has explicitly requested is transmitted on each channel, 
then the channels are precise. Alternative formulations including a state-space model and 0-1 matrix optimization problem 
can be found in [3]. 

The design of a channelization algorithm for a particular environment requires numerous considerations. For example, many 
networks and end-hosts have limitations on the number of connections that they can simultaneously support. Many 
approaches, such as the direct-decomposition, can rapidly run out of available connections. Aggregating into fewer channels 
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results in either excess data being transmitted or received. The optimal channel set must identify the set of channels that 
balances the load on the network against the end-host filtering requirements. Additional difficulties include: 
• Complexity: Given N profiles, there are at most 2A-1 unique subsets that can be constructed from intersections of a given 

user profile set (or its complement) with each of the other user sets. The number of ways that these subsets can be 
combined into M channels grows as a Stirling number of the second kind. Hence, performing an exhaustive examination 

2'v 

of channel definitions to identify the optimal solution is double-exponentional in complexity, 0(M    ), which is 
prohibitive for all but a small number of users. [4] 

• Non-Iterative: It can be shown that iterative solutions that build on the previous solution converge to local minimums 
that do not necessarily coincide with the globally optimal solution. 

One straightforward algorithm that has been investigated extensively as part of RIME is the containment algorithm. Under 
containment, the range (i.e., MSR) of each request is compared against the ranges of each of the channels. If any channel's 
MSR fully contains the MSR of the new request, then the request is aggregated onto that channel and its utility functions 
added. Similarly, any channels that are within the MSR of the request are aggregated into a broader channel. 

An advantage to the containment algorithm is that, if the user requests are independent, then it substantially reduces the 
number of channels supported within the network. This is shown in on the left in Figure 5. These plots were based on a 
Monte-Carlo simulation with approximately 30 correlated attribute values and independent user requests. As may be seen, 
initially the algorithm grows linearly, similar to the receiver-oriented algorithm defined in Figure 4. This is due to the fact 
that initially the likelihood that a request is contained by another request is small; therefore each request is assigned a unique 
channel with the same definition. As the number of requests increases, aggregation begins to occur. In the limit, the 
algorithm settles into clusters that encompass various user groups. In this case, the limiting set of channels was 25. 

The containment algorithm not only reduces the number of channels required to support the user community, but it also 
reduces the amount of data being transmitted redundantly. The plot on the right of Figure 5 shows the number of channels 
with definitions that overlap with other channels (i.e., the number of non-orthogonal channels). When the number of requests 
is small, many of the channels overlap without being contained. Yet, as the number of requests increases, the containment 
algorithm converges to a set of orthogonal channels corresponding to clusters of users. Thus, each channel carries 
information for a different user community. 

5. RIME OPERATIONAL ARCHITECTURE 

The services outlined in the previous sections have been implemented as part of the RIME software architecture.   To 
facilitate integration with legacy systems, the RIME implementation operates as a value-added layer on top of the existing 
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domain-specific legacy services as illustrated in Figure 6. By isolating the domain services from the information 
management services, the legacy flow of data from the sources on the left to the destinations on the right remains unchanged. 
With the addition of information management, the destination of information is not necessarily identical to the original source 
enabling an image library may deliver data onto a directory tree on the destination. 

Accomplishing this, the RIME Core server performs Warfighter Profile and Commander Policy management outlined 
previously. After applying policy and optimizing the resource allocations, the Core service generates instructions to the 
domain adapters (also called transfer agents). On the source side, filters based on the channelization define what information 
should be transmitted on each channel. Expressed as an MSR, the source-side adapters identify which information satisfies 
the criteria and trigger its transmission accordingly. Similarly, on the destination side, receive filters tell the consumer 
applications what channels to subscribe. In this case, the MSR is used to potentially filter out data that the user is not 
interested in but was sent if the channel subscription was not exact. The Core services also inform the network services of 
any quality-of-service allocations derived from the producer's resource map. 

The RIME architecture provides a federated approach to information management. As may be seen, each layer operates 
autonomously of the higher layers with the information layer coordinating actions between the various domains. Domain 
Commercial-Of-The-Shelf (COTS) products optimized for particular domains, such as Netscape Compass WEB server, may 
then be incorporated into the domain layer without requiring any modifications to their software. Under the DARPA/ISO 
Battlefield Awareness and Data Dissemination (BADD) program, numerous third-party capabilities have been integrated to 
support a variety of data types including file, WEB, Predator video, and imagery. Because the information layer does not 
interfere with the flow of data (shown in bold) in the domain layer, information services can be introduced without 
interrupting existing domain-specific services — an important requirement for deployment. Special transport protocols such 
as image tiling standards thus retain their functionality. Although it is not shown in the diagram, the architecture supports the 
notion of smaller sub-domains, with each Core responsible for its own area and only coordinating with the other Cores when 
necessary. This capability helps improve system scalability. 

Consistent with the federated approach, TASC's RIME software only maintains summary informational awareness of the 
lower layers through the  resource maps and thereby avoids  data replication.  Construction of product and summary 



advertisements is accomplished either manually or through automated discovery. Active domain adapters on the source-side 
can automatically update the information provided to the RIME Core services by examining the flow of data in their 
associated repository. For example, using a mix of government and COTS products, completeness of metadata collected for 
approximately 50,000 products was increased from 11% to 90% using automated discovery tools over manual examination. 

TASC's RIME software suite consists of three key object-oriented segments corresponding to the Core services, the domain 
adapter toolkits, and the user interfaces. Consistent with the Joint Technical Architecture designation for the use of either the 
Distributed Computing Environment standards or the Common Object Request Broker Architecture (CORBA) family of 
specifications for distributed computing services, the RIME Core software uses CORBA for its inter-process coordination. 
Yet, RIME is also undergoing work to support customized control protocols tailored to particular government 
communications services. Table 1 below provides a quick summary of the key RIME software capabilities. 

6.   COMPARISON TO EXISTING SYSTEMS 

The need for information management services to improve the quality and manage the quantity of information delivered to 
users over fixed network resources has resulted in numerous commercial and government solutions to this problem. Two 
areas of particular interest are the development of new WEB services and satellite broadcast management. 

Within the commercial world, the exponential growth of information content on the WEB has resulted in numerous 
information management solutions designed to improve the access and delivery of HTML pages to users. Roughly, these 

solutions fall into the following categories: 

• WEB-based Content Discover and Indexing (e.g., Spiders): These tools extract and catalog WEB pages to provide easy 
access to WEB information. Typically, these tools process the text content and keywords embedded into the various 
HTML pages. This information is then indexed according to a set of keywords enabling regular expression searches over 
an ensemble of repositories from a single database. Solutions for content discovery are directly applicable in identifying 
the relevant data per the information management layer's instructions and generating source summary. 

• WEB-based Push Technologies and Notification: Companies such as Tibco (in partnership with Yahoo) and 
EntryPoint/PointCast, allow users to subscribe to URLs or channels that are proactively pushed to the user. [5] Besides 
keeping the user informed of changes in advance, push systems can use multicasting to simultaneously distribute the same 

Table 1: TASC Real-time Information Management Environment (RIME) Software Fact Sheet 

Core Services 

Editor Services 

Domain Adapter Toolkits 

Server-to-Seryer Communications 
Military Standards 
Commercial Standards 

Platforms 

Mapping Tool 
Schema 

Security Services 

Provides smart-push profiling capabilities and commander's policy services.    Also, enables 
producers to advertise repository content.   Channelization algorithm plug-ins enable tailored 
resource optimization based on information needs.    Administration functions are available 
through user interface application as well as WEB-browser. 
Provides access to Core capabilities according to assigned role.   Display is configurable by 
local user. Template library exists for common profiles and policies. Notification is integrated 
with WEB browser. 
JAVA-based transfer agent toolkit facilitates third-party integration with commercial products. 
Hides server-to-server communication details. 
CORBA/IDL. Also supports custom protocols for constrained networks. 
Submitted for DII/COE Level 7 certification. 
Utilizes IDL specification for external interfaces.  Supports XML for logging and notification 
services. Compliant with JAVA event services. ..'-,_ ^ ;..J<„J.1 \,.'_'^:i_ 
Core services operate on Unix/Solaris.   User interface to services available for both Unix and 
Windows systems. 
Configurable. Currently supports SpatialX.        ^ 
Run-time configurable.  RIME Editor automatically reconfigures according to current schema 
and allows for local tailoring of terminology. 
Strong-encryption of password-protected accounts and supports SSL.   Each user is provided 
access limited to the services corresponding to their assigned role in the system such as 
Warfighter, Commander, or Administrator.  -■'■•- 
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content to multiple users thereby saving network resources. Lacking the policy and channelization services outlined 
previously, and tailored for a particular community, these systems complement the RIME architecture by providing 
improved end-to-end throughput within the WEB domain. 

, WEB-based Forward Staging (Proxy Servers): Forward staging allows users to access either pushed content or previously 
accessed information without having to reconnect over the network. The perception to the user is that he is fully 
connected to the Internet even though much of his access is local. When utilized as a receive-side domain adapter, proxy 
servers often address issues such as document organization and garbage collection — critical issues to the end-user. 
Examples include Grape Vine and Netscape Compass. 

Compared to the RIME implementation, pure WEB solutions are typically limited in the semantics supported for expressing 
information needs and their ability to manage resource usage. For example, as most solutions rely on text-based indexing, it 
is difficult to accommodate non-text queries such as geographic polygons or temporal ranges. Along the same lines, since 
most Internet-based products compete for resources using the TPC/IP congestion algorithms, they cannot dynamically 
allocate network resources to favor one mission over another nor utilize policy to adjudicate between competing requests. 

In the government, information management technologies have been evolving for some time. For example, many message- 
based systems allow users to define the relative importance of various classes of information. Then, messages are examined 
against these filters and assigned a corresponding priority. Deduplication and reordering ensure that flash and critical 
messages receive preferential treatment over routine traffic. While these systems operate well within their domain, they do 
not provide the policy services nor general utility-based resource management necessary to span multiple domains. As a 
result, improvements to the national systems to provide real-time seamless access to information are necessary. 

DARPA began sponsoring research in information management technologies in the mid-1990s and demonstrated the concept 
as part of JWID 1995 and Bosnia Command & Control Augmentation (BC2A). Additional research was performed under the 
DARPA/ISO BADD Phase I and Phase II programs. BADD program developed and demonstrated a functional and software 
architecture demonstrating many of the information management services. This research was the basis for the RIME 
architecture. Under BADD, users expressed information requests using constant utility value (precedence). Access policy 
was applied to these requests, and the precedence value was potentially truncated by a single resource policy that specified 
the maximum allowed value for a particular mission. The validated profile was then channelized using the receiver-oriented 
algorithm described earlier. Information types such as file, WEB, streaming video, and database data were all managed by 
this system. Under the DARPA/ITO Agile Information Control Environment (AICE) program, these initial information 
management concepts were extended to perform real-time information management and improve resource management 
through the introduction of utility described in this paper. 

7.   CONCLUSION 

The military is undergoing a paradigm change as the emphasis shifts from collection sensors to a common operational picture 
based on seamless access to information. To accomplish this new paradigm, new technologies are required that 
simultaneously provide the Warfighter with "fly-by-wire" access to data and manage the finite system resources. The RIME 
architecture provides an early example of these next-generation systems. By allowing the Warfighter to explicitly quantify 
his information needs and the utility ofthat information together with Commander's policy defining the "rules" for allocating 
resources, the RIME system optimizes the resources to increase mission success. 

New military doctrine based on information management versus network management together with additional research and 
development is required to make these systems a reality. Until the Warfighter is confident that mission-critical data is being 
delivered in a timely fashion, changes to the current bandwidth-centric management of assets is difficult. To increase users' 
confidence and develop stable high-speed information management systems, advances are needed in visualizing information 
flow, optimizing constrained resources, and efficiently processing large volumes of complex information requests. 
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Abstract 

The exponential growth of the information content available to the user combined with the perva- 
sive use of network-enabled light-weight personal computing devices (such as wearable comput- 
ers and the commercial PalmPilot) requires technologies that maximize the utility of the 
information delivered. Unlike research areas such as advanced sensors, data-mining, and data- 
correlation which increase the availability and quality of information, information dissemination 
and management (IDM) addresses how user's information needs are delivered given end-host and 
network limitations. This is particularly important in dynamic mission-critical situations where 
real-time information must be delivered to the appropriate users in real-time despite the fact that 
the source of the information is not know a-priori and network resources are over subscribed. 

Recently, researchers have been investigating highly-scalable IDM architectures and the algo- 
rithms required to maximize the delivery utility of delivered data. This paper defines an informa- 
tion management architecture that has been developed by TASC and a supporting mathematical 
framework. 

1. Introduction and Motivation 

Achieving mission-critical situational awareness through information dominance requires timely 
and efficient delivery of information in response to changing conditions. Whereas improved sen- 
sor collection platforms and data processing techniques such as data mining enrich the depth and 
breadth of available information, they do little to ensure that the right information is delivered to 
the right users in a timely fashion to ensure overall mission success. Rather, most systems allocate 
and manage their resources on a first-come/first-serve basis with users competing for the avail- 
able resources. As a result, information is distributed according to the time of the user's request 
rather than the importance of the information that is being conveyed. Although recent develop- 
ments in Quality-of-Service (QoS) guaranteed networks help alleviate this problem, they are 
unable to consider how the connection is being used in determining which information is distrib- 
uted to whom. 

During a crisis, the problem is further aggravated by the observation that the necessary informa- 
tion not only exceeds the available capacity of the network resources but is often generated by 
unanticipated sources. Hence, static doctrine which dictate a specific chain of information dis- 
semination can introduce costly delays and potentially misrepresent situations to the end user. By 
emphasizing the management of information over the management of connections, it is possible 

1. This work was partially funded by DARPA/ITO contract DABT63-99-C-0018. 
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Figure 1: Utility-Based Information Service Stack 

to allow the system to route information to the required users without a-priori knowledge of the 
source of the information. 

To address the requirements of rapidly adapting to unanticipated events and globally maximizing 
the value of information delivered to the end-user for mission success, two additional technolo- 
gies are required over the current state-of-the-art. These are utility and information management 
services as shown in Figure 1. 

The introduction of "utility" on the existing QoS networks allows users to express the importance 
of their request to the overall success of the mission. Thus, rather than allocating QoS on a first- 
come/first-serve basis, the network allocates resources to maximize the total utility of the system 
subject to the physical limitations such as available bandwidth and latency. Another advantage of 
utility is that it allows users to quantify the characteristics of various alternatives to their ideal 
request. For example, while a bandwidth intensive connection may provide the maximum value to 
a particular user, utility allows the user to state that a connection at half the total bandwidth has 
some value to the user. Furthermore, this "what-if' capability inherent within utility allows util- 
ity-enabled networks to rapidly react to unanticipated demands on resources without entirely sev- 
ering critical established connections. 

Information-enabled networking is a shift in paradigm whereby consumers submit their informa- 
tion requirements rather than a specific source/destination pair. The network then defines chan- 
nels that ensure that the user receives his required information, informs the users which channels 
to subscribe to, and directs the producers to put the approporiate information on each of the chan- 
nels. Since these information needs are also expressed in terms of the utility of the information to 
the success of the mission, the network continues to dynamically adapt ensuring optimal informa- 
tional awareness. 

This paper mathematically formalizes the utility-based information management problem and 
explores some of its ramifications. This is based upon preliminary work performed by the AICE 
Functional Control Board[AICE-FACB99][Richardson99]. In Section 2. the notions of network 
connections with QoS allocations are defined and extended to define utility. Next, Section 3. 
defines utility constraints and their impact on resource management. Section 4. extends the previ- 



ous definitions into the information domain and formalizes the additional services available at 
that layer. 

2. Network Connections and Utility Functions 

Define S and D to be the set of available sources and destinations respectively. We further define 

S* and D* as the set of all subsets of sources and destinations respectively1. Using this notation, 
we can define an arbitrary connection between a set of sources and their corresponding destina- 
tions as the ordered pair [S,D]. where S and D are non-empty. Similarly, a unicast connection ties 
a single source to a single destination. This is represented as [s,d] where s and d are elements of S 
and D. It follows that multicast connections ([s,D]) and comcast connections ([S,d]) can also be 
expressed. 

Climbing the stack of Figure 1, the network community is actively investigating techniques for 
reserving network resources on a connection to ensure a particular quality of service. Examples of 
network resource reservation protocols include RSVP and ATM. Let us define Q as a set of QoS 
points that satisfy a user's connection requirements. Thus, a multicast session that has been 
assigned a specific QoS can be denoted by the triplet [s,D,q]. Alternately, a unicast connection 
that can tolerate any one of many QoS parameter sets is specified by the triplet [s,d,Q]. If Q* is 
the set of all subsets of Q, we will define the space of these ordered triplets (called connections in 

this paper) as C* = S* x D* x Q* such that any end-to-end QoS connection is an element of this 
set. 

Note that in this formulation, we did not specify what constitutes an element of these sets. This is 
because it often depends upon the support provided by the underlying infrastructure. For example, 
under RSVP, users may specify their quality of service requirements in terms of rate and slack 
(end-to-end delay)[Wroclawski97]. Hence, the dimensions on Q would be these attributes. 

While the ordered triplet fully defines a connection and its service characteristics, it fails to char- 
acterize the value of different alternatives to the user. For example, if the network is unable to 
support a particular multicast session as specified but would be able to support the request at 
either a reduced QoS or by eliminating some of the destinations, the single ordered triplet would 
be insufficient to enable the system to decide. For this reason, we define a utility function which 
weights the various connection alternatives. 

Definition: The channel utility function for request x is denoted ux{C*) —» 31 and satisfies the 

following properties: 
•    Maps a class of connections onto the real numbers. Notionally, this measures the utility of the 

worst-connection within the set. 

1 .Throughout this paper, we let capital letters denote the set of all possible elements in a space 
whose components are denoted by the corresponding lowercase letter (e.g. x e X). We further 

denote the abstract space of all subsets of X as X* . 



• All connections have a non-negative utility. I.e. 0 < ux(Q for all C e C* . Connections have 

zero utility if and only if they have no value to the user. 
• Constraining a connection can only reduce the utility.   I.e. if A c B, then u(A) < u(B). 
• If two subconnections exactly recreate the original connection, then the total utility is the 

same as the original connection. I.e. if A n B = 0, then u(A u5) = u(A) + u{B). 

As a mapping to the real numbers, utility does not directly imply the level of network loading 
induced by the connection but rather the usefulness of the connection if a particular QoS is pro- 
vided. Thus a bandwidth intensive video application may give the same utility value as an audio 
connection but require 100 times more bandwidth. The network may decide to support 100 audio 
requests over a single video request so that the total system utility is higher. 

Formally, the objective of the utility-enabled network is to optimize the total utility achieved sub- 
ject to the physical infrastructure limitations. That is, given N requests for service, find 

N 

r   r        r 1 to maximize V u(c). We shall define this as the utility-based resource optimi- 
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zation problem. 

To illustrate the use of utility, consider the following example. Three users request connections 
where the utility is a linear function of the bandwidth provided. That is, decreasing the bandwidth 
decreases the utility until the connection is no longer useful. Providing bandwidth in excess of a 

particular value also provides no additional improvements in the utility of the data received . The 
utility functions for these three users is illustrated in Figure 2. Optimizing these utilities subject to 
the constraint that the total consumed bandwidth must be less than a particular value yields the 
operating points shown in the graph on the right. 

From this example, we can make a couple of observations. First, constant over a range of connec- 
tions, then resource allocation should allocate the smallest value in that range. Increasing the 
bandwidth assigned to user 3 consumes additional network resources without increasing the util- 
ity. Along the same lines, if a utility is too restrictive, then it is less likely to receive any resources. 
For example, if user 1 had demanded precisely six units of bandwidth, then no resources would 
have been allocated to that request in the previous example. However, since the user identified 
that there was partial value to having less bandwidth, a connection was provided with three units 
of bandwidth. Considering the plot from a different angle, the utility function graceful degrades 
performance as the bandwidth decreases although interrupted connections may be reestablished. 

Another observation from this example is that a utility function that is non-zero at only a single 
point (i.e. a traditional QoS request) is likely to fail. If user 1 had requested a connection of five 
bandwidth units with utility of four and zero otherwise, he would not have received any allocation 

1. This example could have also been done using some of the other attributes of a connection. For example, 
dropping destinations from the requested connection could result in reduced utility until it no longer 
made sense to establish the connection. One can think of this as having a meeting where attendance of 
some members is desired but not required. 



Bandwidth 

Available Bandwidth 

Figure 2: Utility-based Optimization. 
Given the three user's utility functions on the left, the optimal allocations as a function of 

available bandwidth is shown on the right. The bold line overlaid shows the utility achieved 
under the specified bandwidth allocations. For example, when nine units of bandwidth are 

available, then the user 1 is allocated 3 units; user 2 is allocated 5 units; and user 3 is allocated 
1 unit. The achieved utility is 8. These operating points are shown on the left diagram. 

in this example. Along the same lines, a request that is constant (see user 3) will result in the min- 
imum allocations at all times and is therefore equivalent to a single point request. Naturally, 
users could game the system by choosing utility values higher than their counterparts. Managing 
this is the topic of the next section. 

3. Utility Constraints / Policy Functions 

In utility-based resource management, requests can be preempted by increasing the utility suffi- 
ciently high to ensure that all other requests have no substantial value since there is no cost or lim- 
its placed on the utility function defined. The solution is to introduce constraints on the utility 
functions. 

A utility constraint (or policy) places a bound or cost on an individual's utility function. Upon 
admission, a channel request is compared against these constraints and may be rejected or modi- 
fied. Furthermore, a change in a utility constraint may cause an existing submission to be modi- 
fied and change the operating point generated through the utility-based resource optimization 
discussed previously. Before formalizing the definition, let us consider some examples of policies 
to develop intuition. 

Example: Thresholding 
The simplest form of policy is to restrict any user from exceeding a particular maximum utility. 
Thus, whereever the utility function exceeds a specified threshold, it is mapped to the maximum 
allowed value. If in the prior example, user 2's utility function of w(BW) = 2BW - 6 had not 
been truncated to four, no bandwidth would have been allocated to users 1 or 3.   We will denote 
this function as T(u, a) which truncates the utility function to values below a. 



Example: Scaling (or Ranking) 
The difficulty with thresholding is that it fails to prioritize one request over another without 
destroying the original shape of the utility function. Fortunately, scaling enables certain requests 
to receive preferential treatment over other requests without losing the shape of the utility func- 
tion. For example, requests to support a life-threatening activity should take precedence over nor- 
mal administrative activities. While both tasks can make requests for connections, policy 
functions ensure that the appropriate resources are allocated to the critical task first. An example 
is illustrated in Figure 3. In this case, since user 1 's mission is more critical than user 2 and user 3, 
the policy weights user 1 's utility over the others. Therefore, the desired behavior is that user 1 's 
utility function is mapped into the range [2-4] while users 2 and 3 are mapped into the range [0-2]. 

Definition: Let wmi„ and wmnv be the minimum and maximum values of the utility function u.   mm nidx 

Then, the scaling function into the interval [a,b] is given by 

R(a,b)*u(Q = R(u,a,b) + a = {b - a) 
u{C) - u 

LWmax     Mmin- 

+ a (1) 

Thus, using R(uv 2, 4) for user one; R(u2, 0, 2) for user two; and R(u2, 0, 2) for user three, the 

resulting utilities are shown on the right of Figure 3. After utility-base resource optimization, user 
1 is allocated 5 units (versus 3 in the previous example); user 2 is allocated no bandwidth (versus 
5 units previously); user 3 has no change; and three units are unused. 

Note that, while policies modify the utility function, they are not constrained by the physical lim- 
itations of the underlying infrastructure. For example, in the illustration above, the utility was 
determined independent of the fact that only nine units of BW were available in the system. These 
considerations are considered additional constraints on the optimization problem; not part of the 

Userl 
User 2 
User 3 

Bandwidth 

Policy: User 1 more critical than 2 or 3 
Scale user l's utility within range 2-4. 
Scale utility for users 2 and 3 to range 
0-2. 

Bandwidth 

Figure 3: Policy Applied to Channel Utility 
Given the previous users utility functions, the policy causes user 1 to be weighted higher 
than the other users. Consequently, the allocation of resources shifts to emphasize user 1. 

The resolved requests and new operating points are shown on the right. 



policy formulation. 

Example: Integral Scaling 
An alternative to scaling is to use a credit-based system where each request distributes a fixed 
amount of utility over the desired QoS space. Thus, specifying a certain QoS with a high utility 
reduces the utility available for the other potential QoS values. We will define this function as 

I(u) = u(Q/i f u(Q i (2) 

From these example, we shall now generalize the definition of a policy function and explore its 
properties. 

Definition: The i-th channel policy function that applies to user x maps a utility function into 

another utility function (denoted a^U*) —> U*) and satisfies the following properties: 

Policy-corrected utilities are compliant with the policy. That is, a, • a, • ux = o^ • ux 

• Policies are associative. That is,   ax • (a2 • oc3) • ux = (a, • a2) • oc3 • ux . 

• There exists an identify policy that does not change the utility function and a zero policy that 
assigns the utility function to zero everywhere (i.e. assigning resources has no value). 

Theorem : Truncation, scaling, and integral-scaling functions are all valid policy functions. 

Proof. We will show this for the scaling function only and leave it as an exercise for the other 
functions. The key property to show is the first item. It is easy to note that upon applying the 
transform once, the minimum and maximum of R(u,a,b) is a and b respectively. Thus 

R(a, b) • R(a, b) • u = (b - a) R(a, b) • u-a' 
b- a 

+ a = R(a, b) • u (3) 

In defining the utility-constraint function we were only interested in policies that applied to user 
x. However, we did not identify how policies functions and connections are associated; particu- 
larly given that neither the policies functions nor connection requests are known a-priori. Conse- 
quently, we need to define a technique for correlating policies against requests. This is 
accomplished by attaching a "key" to both the utility function and each channel policy function 
such that if the request's key matches the policy, then the policy is considered applicable. Specif- 
ically, let us define the binding space, B, as the set of keys that are associated with each request 
and each policy function. 

Definition: A policy-constrained channel request (or simply channel request) is defined as a util- 
ity function specifying a set of possible connections and a binding space that associates policies to 
the request. This is denoted t,   = [u , B ] . 

Definition: A channel policy is defined as a channel request policy function together with a bind- 



ing space ( p}- = [oc(-, B ] ) such that p}- applies to £,x if and only if Bx n By^0. 

To illustrate, consider a system administrator who wishes to place policies on three destinations 
such that their access to a pair of database servers is managed. Specifically, server 1 primary func- 
tion is to serve destination 1. All requests by that destination should get precedence over requests 
from the other destinations. However, the other destinations are permitted access to server 1 if it is 
not in use by destination 1. On the other hand, server 2 is intended to support destinations 2 and 3. 
Furthermore, the total utility for any request from either destination 2 or destination 3 must be less 
than one to ensure that the destinations compete fairly. 

In this case, the binding space is defined as the source/destination space (B* = S* x D*). The 
policies are 

1. [R(u, 1, 2), {(5,, d,)}]   : Scale utility between 1 and 2 for connections between server 1 

and destination 1. 

2. [R(u, 0, 1), {(sj, d2), (A,, c?3)}]    : Scale utility between 0 and 1 for connections between 

server 1 and destinations 2 or 3. 

3. [0, { 02, J,)}]   : Assign no utility to connections between server 2 and destination 1. 

4. U(u), {(s2, d2), (s2, d3)}]    : Use finite credit for requests to server 2. 

Although this example constructed the binding space from the previously defined source and des- 
tination spaces, this is not always the case. For example, [BADD98] applied policy according to 
the user's command hierarchy and mission alone. In this case, every request for services included 
an identification of the user causing users to be broken down into hierarchical sets — all users 
within the same unit are one set; all users within units within a particular battalion defines another 
set; and so forth. With each policy specifying a set of users through units, battalions, etc., the 
binding between the request and the constraint could be defined. 

Yet, the binding alone is insufficient to apply policy to a particular request since utility constraints 
do not generally commute, (i.e. a, • a2 • ux^a2 • a, • ux). For example, it is easy to see that 

T{\) • R(0, 2) • u * R(0, 2) • T(\) • u for user l's utility of Figure 2. As a result, it is necessary 

to define an ordering function (T(/)) that specifies the order that the policies are applied to a 
user's request. For example, military command structures are typically hierarchical — each indi- 
vidual is subject to the policies of his commander. In this case, the ordering function is defined by 
the position in the command structure of the person submitting the policy. Naturally, this rule 
does not help resolve multiple policies submitted by the same commander. In this case, additional 
rules are required to determine the ordering. 

Using the ordering function, the policy-resolved request for user x with M applicable policies is 



given by 

ar(0) • ar(i) • ar(2) * • • ■ * ar(M) * ux ■ (5) 

Clearly, if we define a resolved policy as am = ar^ • ar^ • ... • oc^), then it is easy to show 

from the properties above that 

<4(0) ' «no * ■•• * aY{M) * ux = «11 * «2 • ••• * «A/* ux = «A/# M* (6) 

In other words, replacing the originally submitted policies with their resolved policy equivalent 
does not change the behavior of the system. For this reason, pre-calculating various resolved poli- 
cies are being actively considered as a technique for reducing the processing time required to 
resolve a request against policy. 

4. Information-enabled Networking 

A limitation of the previous formulation is that it does not exploit redundancies in the requests for 
information. Different users who independently request connections for the same information 
cause the system to send the data individually to each user and waste network resources. This lim- 
itation can be overcome by a simple extension of the previous binding space to provide content- 
based processing services. 

Information (or content-based) processing extends the traditional channel request/management 
services by exploiting details about the information that is intended to flow over the connection. 
Some of the services that are available under content-based processing include: 
• Information-based Utility and Policies: Rather than defining the utility of various connections, 

utility is defined based on the value of the information. Along the same lines, information 
resource policies shape the information utility function and manage the desired system behav- 
ior. For example, a requestor may specify that data corresponding to a particularly important 
geographic location is mission-critical over other information requests. 

• Automatic source selection: Since consumer applications express their information interests 
and producer application summarize their available information through density models, the 
system can dynamically identify which sources should be feeding the constructed channels. 
This eliminates the need for a-priori knowledge of the available sources. 

• Source-based Utility Modification: Under the previous model, the requestor is required to 
define the utility function based on some a-priori information about the characteristics of the 
information that will be sent. In the information domain, the network can determine the neces- 
sary QoS utility function by combining the source density models with a user defined utility in 
terms of the information itself. 

• Dynamic Channelization: Because the content of the connection is known, the system can 
improve resource usage by aggregating similar requests onto a shared channel. 

• Tailored control of sources and destinations: Unlike broadcast models where users passively 
subscribe to broadcasts containing specific content (e.g. news channel CNN versus sports 



channel SPAN), content-based processing allows the system to precisely control the content 
on the channels such that only relevant information is transmitted. Thus, if a user is only inter- 
ested in news reports about a particular event, then only those reports would be transmitted 
versus CNN that broadcasts all news events even if no one is interested. 

We will explore each of these services in detail in the following sections. 

4.1 Information-based Utility, Resource Policy, and Access Policy 

We begin by extending the notions presented in Section 2. and Section 3. by defining the 
exchange characterization space which encompasses both the binding space and the connection 

space(2T* 3 B*). Furthermore, this space includes any additional parameters that enable a user to 
describe their information needs. 

Example: An local weather forecasting application requires recent weather measurements for the 
immediate surrounding region. If measurements such as barometric pressure and temperature are 
provided within 15 minutes of capture, then the information is very useful. Information delivered 
within an hour of the measurement has limited usefulness. Information delivered within an hour 
for regions beyond the local area also has limited usefulness. After an hour, all information is too 
stale to be used in the application. 

As a result, the user submits an information request with a utility of 
• Weather data within 100 miles of station delivered within 15 minutes has utility of 10 
• Weather data within 100 miles of station delivered within 1 hours has utility of 5 
• Weather data within 1000 miles of station delivered within 1 hours has utility 5 

Rather than specifying specific connections to various sites or identifying the connection's 
required QoS, the applications needs are expressed abstractly allowing the system to solve for the 
additional required data. In this case, the request does not need to know a-priori the bandwidth 
required to support this request. Furthermore, if multiple applications are interested in the same 
weather data, they can all be served with a single multicast channel saving network resources. 

From example, it is easy to see how the previous definitions of the previous section are extended 
to support information management. Specifically, these are shown in Table 1. As can be shown, 

Table 1: Information-Enabled Basic Definitions 

Information 
Domain 

Definition Analogy 

£* Exchange characterization. Also called the Information Space Region (ISR) 
or Metadata Space Region (MSR). 

B* 

v(E*) -> T\ Information utility function. Defines the "value" of information to the user «(/?*)->9* 

=, = [!>,(£*),£,] Policy-constrained information request (or simply information request). $x = [ux(B*),Bx] 



Table 1: Information-Enabled Basic Definitions 

Information 
Domain Definition Analogy 

a(F*)^> V* Information policy function. a(K*)^> V* 

PvH[av(K*),£v] Information resource request policy. /;^[a((r*)./TJ 

these definitions adhere to the properties outlined earlier with the appropriate change in variables. 

4.1.1 Information Utility 

The information utility function places value on various information independent of how that 
information is delivered. Like the previous utility definition, this is subject to the same properties 
as below except that the connection space is replaced by the exchange characterization space. 

4.1.2 Information Policy 

This capability follows naturally from the extension of the binding space into characterization 
space. Its advantage is that the connection is now tied to how it will be used as well as who/what 
is requesting the connection. As before, this adheres to the properties of policy outlined previ- 
ously. 

4.1.3 Access Policy 

Information that has no value to a particular user is assigned a utility of zero. In the same fashion, 
an information policy can modify a user's utility function such that certain information is given 
zero utility. The effect is that, during resource allocation, it is unlikely that any zero utility infor- 
mation will be allocated to a channel. However, as we shall see in Section 4.3, channelization may 
transmit information that has no utility to a particular user on a shared channel because, by shar- 
ing the channel, the overall utility of the system is improved. Thus, a utility of zero does not guar- 
antee that the information is not sent to the user. 

An access policy differs from an information policy in that it expressly prohibits information from 
being delivered to a particular user. Thus, access policies constrain the available channelization 
solutions as is discussed later. 

4.2 Automatic Source Selection and Channel Utility Construction 

Definition: The source density function, pa(E) —> Q, for source "a" defines the QoS required to 

deliver information E. This is subject to the following properties 
• Pa(E) = 0 if and only if source "a" contains no information satisfying E 

• If £, c E2 then pfl(£,) 3 pa(E2). 

The second bullet above is a consequence of the observation that increasing the requested infor- 
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Figure 4: Illustration of Source Density Function and Pull-back 

mation requires more resources and therefore decreases the possible set of QoS values that are 
sufficient to guarantee delivery. In other words, any QoS that is sufficient to send E2 is sufficient 

to send £, .This is illustrated in Figure 4. 

From this definition, we define the pull-back of QoS as the information that can be delivered 
given a particular QoS as the set of sets whose image under the density function is Q (i.e. 

PA (£?) ~~* E* )• Note that this returns a set of exchange characterizations that are all possible to 

satisfy      by      the      particular      group      of     QoS      parameters.      Let      us      define 

"(0)=  max v(£) :  £e p~'(g) ■ 

Theorem : u(0) is a channel utility function. 

Proof. By definition, u(0) > 0 since v(E) > 0. Consider Figure 4. If A c B c C* , then it follows 

that   (E*A = p~ (A)) c (E*B = p~ (B))   — any element that is in the pull-back of A is also in the 

pull-back of B - so u(A) < u(B). Finally, let A and B be elements of connection space with no 

intersection. Then let p^ (A) and pa (B) be the subset of the pull-backs of A and B that have the 

maximum utility of all pullbacks. Clearly these sets cannot intersect. Then we have 

u(AvB) = v(p-\A)u~p-\B)) = vCp^^ + vCp;1^)) = u(A) + u(B) . 

Hence, we can construct a request's channel utility function without having to know a-priori the 
service required to deliver the data! 

4.3 Channelization 

Given that the system knows not only the utility of the information but also the content to be 



transmitted over the connection, channelization looks for opportunities to aggregate users onto 
shared channels reducing redundant transmissions. The result of this analysis consists of a set of 
channel definitions along with a subscription rule that defines which channels a user needs to join 
in order to satisfy their information needs. 

Definition: A channelization algorithm (%(E*) —> E*) maps a set of information requests into 
another set of information requests such that 
• The union of all the information covered by the new sets contains all information contained in 

the original sets. That is   {j EE c     {J    EE. We say that the constructed channels cover 
E e 5* Ee x(H*) 

the previous information requests. We further say that a covering is orthogonal if the intersec- 
tion between any two different sets after channelization is null. A covering is exact if the 
equality above holds. 

• Aggregation increases the utility. That is, for every request, x e Z* , there exists a corre- 

sponding channel, y e %(E*), such that v (Ex n E) > vx(Ex n E ) . 

Observe that the second property does not require that all channels that intersect the requests 
information region has to have a higher utility - only that at least one channel exists that does. For 

the remainder of this paper, we shall combine utility functions by adding them together . 

Definition: The subscription rule for a given channelization algorithm defines which channels a 
request needs to subscribe to in order to fully satisfy their information needs. This rule is precise 
if the union of the exchange characteristics for the subscribed channels equals the original 
exchange characteristic. The standard subscription rule is that each request subscribes to all chan- 
nels that intersect the requests exchange characteristic. 

Lemma : The standard subscription rule is sufficient for any orthogonal channelization algo- 
rithm. 

The interpretation of orthogonal, exact, and precise bears additional discussion. If a covering is 
orthogonal, then no information is common on two different channels. As a result, all information 
is broadcast exactly once. On the other hand, exactness implies that only information that at least 
one user has requested is sent. Thus, evening news broadcasts are neither orthogonal (since differ- 
ent stations carry the same stories) nor exact (since the broadcast is independent of whether any- 
one is listening). Preciseness measures the amount of excess information that a user may receive 
when subscribed to a particular channel. For example, a user that is only interested in tomorrows 
weather and subscribes to the evening news is not precise since they will also receive other new 
stories. 

Let us briefly examine some simple channelization algorithms illustrated in Figure 5. 

1. The combination of utility functions is important in that it effects the "fairness" of the competition 
between various channels. For example, are 100 items with utility 1 aggregated together more important 
than a single very important request at utility 99. This issue is analogous to the issue of TCP/IP fairness 
within the multicast community. 
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Figure 5: Sample Channelization Algorithms 

4.3.1 Trivial Channelization Algorithms (No Aggregation and Full Aggregation) 

The trivial channelization algorithm maps each request onto itself (Xtriviaii^i' ^2) = {^i> —2} ) 

with a subscription rule that each request joins its corresponding channel. Clearly this algorithm is 
exact and precise but not orthogonal as overlapping requests for data will result in the same data 
being sent twice. 

Another   trivial   channelization   algorithm   maps   each   request   onto   a   single   channel: 

%triviai2("i' "2) = t"i + w2' E\ u E2^ ■ ^ms algorithm is both orthogonal and exact. However, it 

is not precise since subscribing to the common channel results in excess information being 
received. 

4.3.2 Direct Decomposition 

Neither of the previous two algorithms took into consideration the interrelationships between the 
various information requests. This situation was investigated by [Zabelle98] and the results are 
extended here under the current framework. 

Given two utility-based requested for information, we define a channelization operator that gener- 
ates three disparate channels given two channel requests. Specifically, 

Xoptt-i» •=■2) - {["i. E2 n E\1> Lw2' E2 nE\]» [u2 + u],E2nE]]} (7) 

Channelization of more than two requests is defined by recursively applying the above equation. 
The standard subscription rule is used.   It follows from this definition that optimal channelization 

Satisfies the properties of the channelization algorithm definition. 
•    This algorithm is exact, orthogonal, and precise. 



• Commutative (i.e. Xopt(Hi> Ei) = XoPt(E2' Ei)) 

• Associative (i.e. xopt(H,, X0pt(52- H3)) = Xopt(Xopt(si> -2). =3)) 
• Combining two requests with non-overlapping information needs does not change the utility. 

(i.e. If £,n£, = {0}  then Xopt(EltE2) = {Z,,E2,0}). 

Theorem :The number of channels in any orthogonal and precise channelization algorithm must 
be equal to or greater than the number of channels in the direct decomposition. 

Proof. Assume the contrary. Then there must be at least one channel (call it X) that intersects at 
least two direct decomposition channels. However, for any two direct decomposition channels 
there is at least one requestor that is interested in the data in one set of the direct decomposition 
but not interested in the other set. Due to orthogonality, the standard subscription rule is sufficient 
and this request would subscribe to X and receive information that was not requested. Therefore, 
the algorithm is not precise — contradiction. 

Lemma : The direct decomposition is the best orthogonal, precise channelization algorithm. 

Unfortunately, while the direct decomposition is theoretically optimal, the number of channels 

grows exponentially as 2A' where N is the number of requests. Therefore, non-optimal solutions 
are required. The area of constrained channelization is an active research area. 

4.4 Tailored Source/Destination Control 

Density model defines what information is available on each source and the required QoS neces- 
sary to satisfy it. Channelization establishes what content should be broadcast over each individ- 
ual channel. Therefore, information management select sources and specifies what information 
they should send. 

5. Comparison against Existing Systems 

Numerous utility-based and information-based network architectures have been proposed in 
recent years as a natural evolution from the current systems. While not refined formally to the 
knowledge of this author, they have demonstrated the potential of these services and warrant dis- 
cussion. 

The DARPA/ISO Battlefield Awareness and Data Dissemination (BADD) program developed 
and demonstrated a functional and software architecture demonstrating many of the information 
management services. Specifically, the BADD system enabled users to express information 
requests with constant utility value (precedence). Access policy was applied to these requests and 
the precedence value potentially cropped by a single resource policy that specified the maximum 
allowed value for a particular mission. The validated profile was then channelized using the non- 

aggregating trivial algorithm described earlier . Information types such as file, WEB, streaming 
video, and database data were all managed by this system. 



BADD was a success because it proved the feasibility of information management services and 
developed a set of software requirements that capture the characteristics of the functional archi- 
tecture. However, the currently implemented algorithms for channelization and support for 
resource policies are limited in both performance and scalability. In addition, the BADD architec- 
ture lacked an underlying network infrastructure that would support utility-based resource reser- 
vation. Currently, the DARPA/ITO Agile Information Control Environment (AICE) program is 
addressing this technology gap to better manage the network resources through scalable utility- 
based services and supporting high-speed algorithms. 

In addition, numerous companies have implemented some of these services — particularly within 
the Web environment — in direct response for the need to deliver more services to their customers 
using a limited networking resource. For example, TIBCO has developed an architecture with 
three layers: Informaton Dissemination & Event Nofication; Data Integration, Routing & Trans- 
formation; and Messaging [Tibco99]. These layers provide some of the information management 
capabilites with neither policy, channelization, nor utiliy. Other vendors, such as Netscape, have 
developed servers to proactively construct custom WEB pages based upon a user constructed pro- 
file. 

6. Conclusion 

While projects such as the BC2A and BADD have demonstrated the technical feasibility of IDM 
services, they have only begun to address the research issues necessary to achieve the full poten- 
tial of IDM. 
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Containment algorithm 

EXAMINING THE CONTAINMENT ALGORITHM 

Introduction. Consider the following very simple, abstract, model of an information dissem- 

ination system: There are N distinct information regions, and there are M users who may 

want some of those regions. Let A beanMxiV matrix, called the user request matrix, 

whose rows represent users and whose columns represent information regions. If user m 

wants information region n, then the mn th element of A is 1, while if user m does not want 

information region n, then the mn th element of A is 0. 

The problem is how to efficiently package the information for dissemination. That is, 
the problem is to combine information regions into channels which are then singlecast or 
multicast to various users. That packaging is described by two binary matrices. One, denoted 

by C, is called the channelization matrix. It is much like the user subscription matrix, 
except that it has one row per information channel, and that row has a 1 in each column for 

which an information region is carried by the channel in question. Matrix C is K x N, where 

K is the number of channels. The other matrix is called the user subscription matrix, 

denoted by S. It is a binary M x K matrix with a 1 in row m and column k if user m sub- 

scribes to (receives) channel k. If each user is to get everything it requested, then there must 

be a 1 in each position of the product SC where there is a 1 in A . 

One group of channelization methods constructs a single channel for each user. One 
extreme method in this group is to make one giant channel containing all the information 
regions wanted by every user, and broadcast that same channel to every user. This method 
may overwhelm some or all of the users with unwanted information, but it minimizes the 
total information sent. Essentially, this just places the problem of filtering information for 
individual users into the hands of the users themselves, who may lack the resources to 
accomplish it. A second extreme method of this group is to do all the filtering at the source, 
make a separate channel for each user, a channel containing precisely the information the 
individual user wants, and singlecast each of those channels to their respective users. This 
method may overwhelm the information system by sending many information regions 
repeatedly, but it eliminates the unwanted information received by the users. 

A third extreme method, not in the group that sends only one channel to each user, is 
to create one channel for each wanted information region, and singlecast or multicast, as 
appropriate, those channels to the users requesting them. This method minimizes both the 
unwanted information and the total information sent, but it may require the management of 
very many channels, and the complexities of addressing those channels to differing subsets 
of users. If the ability of the information system to manage channels limits their number, 
either of the latter two methods may require more channels than the system can accomo- 
date. 

A way is sought that channels the information into a limited number of channels that, 
in some compromise sense, minimizes the unwanted information received by the users and 
minimizes the total information sent to all users. The way the information is channeled is 
often called an algorithm, referring to the computations needed to decide which information 
regions go into which channels and which users get which channels. 
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Containment. One possible compromise method—really no compromise at all— is to exam- 
ine the rows of the user request matrix to find users with identical requests. A separate 
channel is then constructed for each unique request and is either singlecast to its only 
requestor or is multicast to its several requestors. Of course, any user that wants no infor- 
mation regions at all—any all-zero row of the user request matrix—may be disregarded. 
Such a situation would never happen in practice, for a user request would not be initiated 
until some information region was requested, but it may well happen in the methods for 
examining the packaging algorithms here. When the number of information regions is large, 
there may be very few or no identical requests, and this approach may accomplish little or 
nothing. 

A further compromise—a real compromise—is to examine the rows of the user request 

matrix for rows that "contain" other rows. If all the requested information regions in row i 

are also requested in row j, then row ;' is said to contain row i. Another way to think about 

this is that if any element of row i is 1, while the corresponding element of row ; is 0, then 

row j does not contain row i. Two rows that are equal will contain each other by this defini- 
tion. In this compromise, termed the containment algorithm, contained rows of the matrix 
are so marked, except that one row of each set of equal rows will survive as uncontained. (An 
all-zero row will be contained by any other row, so this special case may usually be disre- 
garded, a possible exception being when all the rows are all zeros. This is admittedly a very 
uninteresting nuisance case, but it can skew statistics when examining situations with very 
small numbers of users and information regions. When it happens, the containment algo- 
rithm declares all the rows to be contained.) A separate channel is then constructed for each 
uncontained user row and is sent to its user and to each other user contained by this one. 
This method is in the group of methods that sends only one channel to each user. When the 
number of information regions is large, there may be few or no user requests that contain 
those of other users, but it is not clear at the outset to what extent this may happen. 

The question is: What savings in information sending is likely with the containment 
algorithm of packaging? The answer to this question obviously hinges on the user informa- 
tion requests. In some situations, significant subsets of users may have very similar 
requests. 

Deterministic Considerations. One aspect of the question is capable of a deterministic 

answer. Given TV information regions, how many uncontained user requests are possible? 
The answer is 

Num(N) = (N
N

/2) (1) 

In this formula, the binomial coefficient is indicated, and the lower number, N/2,is an inte- 

ger. If N is odd, it makes no difference whether N/2 is rounded up or down, the result is the 

same. 

The derivation of this result is straightforward. Consider a user request as a binary 

number having N bits, which are the elements of the user request row. For example, con- 
N 

sider the simple case where N = 3. There are only 2    possible distinct user requests 
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*N 
(including the null request), 8 in this example, numbered from 0 to (2   - 1). These requests 

may be used to number the vertices of an N -dimensional hypercube, with the example case 
being illustrated in Figure 1. Here, each vertex contains any vertex below it on a shared 
edge, and is contained by any vertex above it on a shared edge. Containment "chains" are 
any upward paths along edges of the cube. In the example, vertex 5 (binary 101) contains 
vertices 1 (binary 001) and 4 (binary 100). That is, the cube vertices are grouped into N + 1 

Figure 1: Containment cube (JV = 3) 

levels (here 4), with the level indicating the number of Is in the binary representation of the 
vertex number. There are obviously 

"k = 
m 

(N-k)\k\ 
(2) 

vertices on the ifcth level, since there are this many ways to place k Is into N bits. It is clear 

that none of the vertices at the itth level contain each other, and some thought will show 
that there can never be more uncontained user requests than there are vertices at that level 
that has the most vertices, leading to the formula above for the maximum number of uncon- 
tained user requests. 

Perhaps more useful is the ratio of the maximum number of uncontained user requests 
to the maximum number of possible user requests, which is 

rum(N) = 

N 
N/2 (3) 

This ratio tends slowly downward as N increases, although, when N is odd, the ratio is 

equal to that for the next higher even value. When N is 10, the ratio is about 0.25, while 
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when N is 60, the ratio has fallen to about 0.1, as Figure 2 shows. This might look attractive, 
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-1—_L    '      '      '      '—rt 
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number of information regions 

Figure 2: Ratio of maximum number of uncontained requests 
to the number of possible requests 

17 
until it is realized that there are more than 10    possible uncontained user requests for 

N = 60. The hope is that the ratio might indicate a potential for consolidating user requests 
by containment when there are only a tiny fraction of those possible. 

A Probabilistic Formula Approach. Additional insight into the question of the potential 
utility of the containment algorithm might be obtained by considering random information 
requests. That is, suppose each element—0 or 1—of the user request matrix were chosen 
independently, at random, with a probability p of being 1, and a corresponding probability 

q = 1 -p of being 0. Given that probability p, the number of users M, and the number of 

information regions TV, how many uncontained rows of the matrix are likely to survive, and 
how many information regions will they likely have? 

Elementary probability formulas do little to answer these questions. Define the proba- 
bility Per to be the probability that any two distinct selected rows of the user request matrix, 

say row i and row j, are equal through r elements. If two rows are equal through r ele- 

ments, they must be equal through r— 1 elements, and the independently chosen rth ele- 
ments must also be equal, so 



containment algorithm 

Per = Per-M2+P2)=Per-^-^P) ^ 

Per= (q2+p2)r = (l-2qpY (5) 

The probability that two rows are fully equal (through all N elements) is Pe, where 

Pe = PeN = (i-2qpf (6) 

The probability that two distinct selected rows are not equal is 

Pne= l-Pe= l-(l-2qpf (7) 

Define the probability Pcr to be the probability that for any two distinct selected rows, 

row i and row j, each element in row i equals or exceeds the corresponding element in row 

;* through r elements. In this case, row i is said to contain row j through r elements. As 
above 

Pcr = Pcr-\^-<lP) (g) 

Pcr = (l-qp)r (9) 

The probability that row i fully contains row j (through all N elements) is Pc, where 

Pc = pcN = U-qpf do) 

It will also be useful to define the probability that one given row does not contain 
another given row as 

Pnc= l-Pc=  1-(1-qpf (ID 

To proceed, it would be useful to have formulas giving the probabilities that row i is 

not equal to any of a set of K other rows (distinct from each other and from row /), and that 

row i is not contained by any of a set of K other rows. It might at first be thought that, since 

the distinct rows j and k are independent of one another, the event that row i does not 

equal row j would be independent of the event that row i does not equal row k, with a simi- 
lar statement where "is not equal to" is replaced by "is not contained by". This is not, in gen- 
eral, the case, and it is worth the effort to fully understand why. If such were the case, then 
the probability that row i is not equal to any of a set of K other rows would be given by 
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PneK = Pne    (incorrect) (12) 

and the probability that row i is not contained by any of a set of K other rows would be 
given by 

PncK = Pnc    (incorrect) (13) 

Suppose that the probability p is smaller than one-half, so that rows with fewer Is are 

more likely than rows with more Is. If it is given that row i does not equal row j, then there 

is an increased likelihood that row i is one of those less likely rows with more ones, and a 

correspondingly increased probability that row i does not equal some other row k. That is, 

the events that row i does not equal row j, and row i does not equal row k are correlated, 

even though rows j and k are independent of one another. The correlation is provided by the 

common row / in each comparison. If the probability p is exactly one-half, then any of the 
N 

possible 2    rows are equally likely, and the generally incorrect formula above for the proba- 

bility that row i is not equal to any of a set of K other rows becomes correct. 

When the "is not contained by" case is considered, the formula above is incorrect even 

when the probability p is one-half. Because rows with fewer Is are more easily contained by 

other rows than are rows with more Is, if it is given that row i is not contained by row j, 

then there is an increased likelihood that row i is one of those rows with more Is, and a cor- 

respondingly increased probability that row / is not contained by some other row k. 

If the above arguments are not sufficient to convince you of their merit, as they were 
unable to fully convince me, then a good, if tedious, way to convince yourself is by a full 
examination of the most simple case that presents the possibilities. 

When there are three rows and two columns in the user request matrix, there are six 
elements and a total of 64 possible matrices. These matrices may be divided into seven 
groups, depending on the total number of Is in the matrix: there is one matrix with no Is, 

whose probability of occurrence is q ; six matrices with a single 1, each of whose probability 

of occurrence is pq ; fifteen matrices with two Is, each of whose probability of occurrence is 
2   4 33 

p q ; twenty matrices with three Is, each of whose probability of occurrence is p q ; fifteen 
4   2 

matrices with four Is, each of whose probability of occurrence is p q ; six matrices with five 

Is, each of whose probability of occurrence is p q; and, finally, one matrix with six Is, whose 

probability of occurrence is p . 

Now, by counting cases, multiplying by the probability of occurrence, and adding, the 
probability that row 1 equals row 2 is given by 
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F(row 1 = row 2) = q + 2pq  + 3p q  + 4p q  + 3p q  +2p q+p 

= l-4p + Sp2-8p3 + 4p* = {\-2pqf = Pe 

which is just what is expected. Note 

(14) 

Pne  =  (l~Pe)  = 4p(l - 2p + 2p2 -p3) (15) 

Using the same method 

P(row 1 # row 2, row 1 * row 3) = 2pq +9p q  + I4p q +9p q + 2p q 

= P(2-p-2P
2+p3)*P2

ne (16) 

Figure 3 graphs the probability that row 1 is not equal to either row 2 or row 3, graphs 
what this value would be if the two events were independent, and graphs the difference. The 
two curves are reasonably alike, but this is for a very simple case, where one row is being 
tested for equality against two others. If the number of rows K in the set that is being com- 

pared to the single row i is larger than two, then the difference between the true result and 
the result derived from the assumption of independence will likely be larger. 

For the probability that one row contains another 

F(row 2 covers row 1) = q  +4pq  +8p q  + lOp q  +Sp q  +4p q+p 

= l-2p + 3p2-2p3+p4 = (l-pqf = Pc (17) 

which is just what is expected. Note 

Pnc = (l~pc) = p(2-3p + 2p2-p3) (18) 

By counting, multiplying, and adding as before 

5 2   4 3   3 4   2 
P(row 1 is not covered by row 2 or row 3) = 2pq + 5p q  + dp q + 4p q 

= p(2 -5p + 6p2 - 4p3 + p5) * P2
nc 

There is something notable about this formula. All the prior probability formulas were sym- 
metrical about the point p = 1/2, but this one is not. 
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Figure 3: Probability that row 1 is not equal to either row 2 or row 3 

Figure 4 graphs the probability that row 1 is not contained by either row 2 or row 3, 
graphs what this value would be if the two events were independent, and graphs the differ- 
ence. In the case of containment, even in this simplest of examples, the difference between 
the two results is considerable. The difference would get larger if the one row were being 
considered for containment by more than two other rows. 

These problems with event correlations have precluded the development of closed-form 
formulas to predict the performance of the containment algorithm and its relatives. 

There are a few things that may be done with formulas. Comparing independently selected 
rows to a specified pattern for equality is a sequence of independent events. As the probabil- 
ity p becomes large, while the number of information regions is reasonably small and the 
number of users is large, there is an increasing likelihood that some user wants all the infor- 
mation regions. That is, there is an increasing probability that there is a row of all Is in the 
user request matrix. This probability is easily formulated as. 
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Figure 4: Probability that row 1 is not contained by either row 2 or row 3 

NM 
Pn= I-U-P) (20) 

A better way to examine this formula is to ask how many users would be required to 
make this probability equal 99%, as a function of N and p. The answer is 

Mu = 
ln(0.99) 

ln(l-/) 
(21) 

Figure5graphsthisfunction,whichhelpsinunderstandinghowthecontainmentalgorithm 

behaves for higher values of the probability p. Given a value of p equal to one of those lines 
on the graph, if the number of users and the number of information regions corresponds to a 
point to the left of the line, then the containment algorithm will very likely produce the sim- 
ple result that there is just one uncontained user who wants all the information regions. The 
behavior of the algorithm for small values of the probability p is more subtle 
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Figure 5: Number of users needed to make the probability of having a row of 
all Is exceed 99% 

An Algorithm Test Bed. A computer program was written to actually fill matrices with Is 
and 0s, implement the containment algorithm, and count the number of uncontained rows. 
This program was written primarily to examine the potential utility of the containment algo- 
rithm, but there are other reasons. There is a need for a test bed for algorithm development 
to see just how a containment algorithm would be implemented efficiently and to see how 
much computer work is involved. Extensions or modifications of the containment algorithm 
and other algorithms entirely may be developed which will also need analysis, and the test 
bed can be quickly modified to provide it. The program has two modes of operation: a deter- 
ministic mode and a Monte-Carlo mode (it actually has several Monte-Carlo modes). If the 
total number of elements in the matrix (the number of users times the number of informa- 
tion regions) is quite small, say fewer than 28 or so, then there are only two raised to the 
power of this number of possibilities. With 28 elements, there would be just over 268 million 
different possible matrices. In the deterministic mode, each of these possibilities is examined 
in turn. The probability of a particular matrix occurring is easily computable by just count- 
ing the total number of Is in the matrix, and applying the containment algorithm to each 
matrix allows the number of uncontained rows and related statistics to be computed. 

Finally, the probability-weighted sum of the number of uncontained rows is calculated 
as the expected number of uncontained rows. The deterministic mode allows many different 
probabilities p to be examined at once. The same deterministic sequence of matrices with 

10 
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the same numbers of uncontained rows are involved, regardless of p. Only the weighting 

factors involved in computing the expected number of uncontained rows change as p 
changes, and this is a small part of the algorithm in time or space 

Prime interest in the algorithms is on cases with many more than 28 elements in the 
matrix, in fact, with thousands of elements in the matrix, where the deterministic mode is 
out of the question. The Monte-Carlo mode fills a matrix according to a specified probability 
that any element is 1, then applies the containment algorithm to count the number of uncon- 
tained rows, and repeats this process for a specified number of samples—generally a very 
tiny fraction of the possible number of such matrices—and simply averages the results for an 
approximation to the expected number of uncontained rows. The Monte-Carlo mode can only 

consider a single value for the probability p at one time, since the elements in the sample 
2 

matrices depend on this value. It takes a number of operations roughly proportional to M N 
to simply examine containment for a single matrix, so even the Monte-Carlo mode is very 
slow to handle matrices involving 1000 or more users and 100 or more information regions. 

In order to make filling the matrix very efficient, the random fill algorithm at present 
only accommodates element probabilities that are integral multiples of one-sixteenth. This 
makes it easy to use an integer random number generator and use four bits of the random 
integer at a time to generate each element. The random integer generator is a simple multi- 
plicative generator that always produces positive odd integers, so the first and last bits of the 
32 are unusable. Seven elements of the matrix are generated from one random integer. At 
first, it was thought that this range of probabilities would suffice, but it may be that smaller 
probabilities than one-sixteenth need examination. If so, the random fill algorithm must be 
rewritten. 

The Containment Algorithm Itself. The implementation of the algorithm is fairly simple. 
First, an array of integers, the containment vector conv[], is constructed with one element for 
each user, and each element of this array is initialized to -1. This value indicates an uncon- 
tained user request, and is temporary. When it is discovered that the request of user i con- 
tains that of user j, then conv[j] will be set to i, indicating both that user j is contained and by 
whom. Of course, it may later be discovered that the request of user i is itself contained by 
that of user k, so that conv[i] is set to k, and this process may produce containment chains 
that ultimately lead to an uncontained user request. After the containment algorithm is 
completed, the chains of containment indicated by the conv array are followed up so that 
each contained row is indicated, in conv, as being contained by some uncontained row, which 
is the end of the chain. 

The algorithm loops over all the rows, calling the current row i. If row i is already con- 
tained (if conv[i] is not -1), then row i is not further considered. For each considered row i, 
the algorithm loops over all the remaining rows, beginning with row i+1, calling the current 
inner loop row j. If row j is already contained (if convlj] is not -1), then row j is not further 
considered. Having specified rows i and j, two temporary logical variables, iconj and jconi, 
are set true temporarily. A test is made, going down the two rows one element at a time, to 
find rows that do not contain each other, since this is all that one element can tell. If lack of 
containment is found, then the appropriate logical variable is set false, and if both logical 
variables are false, the test for these two rows is terminated. After the test is complete, if 
row j does contain row i, then convh] is set to j, and the row i loop is advanced (which starts 
a new set of rows j). If row i contains row j, then convlj] is set to i, and the next row j is con- 
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sidered. At the beginning, the algorithm sets the number of uncontained rows equal to the 
total number of rows, and then subtracts one whenever a contained row is found, keeping 
track of the number of uncontained rows. 

Once the containment algorithm is done and the conv array chains are followed up, 
various related measures of the performance of the algorithm may be computed, such as the 
maximum number of information regions in any one uncontained row, and the total number 
of information regions in all the uncontained rows. 

Results Of the Simulation. A single (very long) run of the program in its deterministic 
mode examined every case where the product of the number of users and the number of 
information regions is 28 or less (46 possibilities), and for each value of the probability p 
that is an integer multiple of one-sixteenth, from one-sixteenth to fifteen-sixteenths. Table 1 
shows a sampling of the simulation results from this run. The first three columns are the 
input parameters. The fourth column is the expected numbers of uncontained users. The "max 
regions" column is the expected maximum number of information regions in any one channel, 
while the "total regions" column is the expected number of information regions included in all the 
uncontained user requests, where some regions may be included more than once. 

Interest in such small numbers of users and information regions is limited, but the 
simulation cannot practically treat larger numbers in a deterministic fashion. Examination 
of larger problems must be by Monte-Carlo methods. 

Table 1: Deterministic Simulation Results Sample 

rows 

M 

cols 

N 

prob 

P 

uncontained 
users 

max 
regions 

total 
regions 

3 2 0.0625 0.34038 0.33274 0.35205 

3 2 0.0500 1.17188 1.56250 1.75000 

3 2 0.9375 1.00129 1.99822 1.99951 

3 9 0.0625 1.23402 1.15811 1.59834 

3 9 0.0500 2.59857 5.75193 12.25212 

3 9 0.9375 1.13423 8.91332 9.94293 

6 4 0.0625 1.15521 0.91561 1.28872 

6 4 0.0500 1.96416 3.21454 5.42680 

6 4 0.9375 1.00030 3.99986 4.00076 

9 3 0.0625 1.12290 0.92377 1.32455 

9 3 0.0500 1.41386 2.69739 3.48926 

9 3 0.9375 1.00000 3.00000 3.00000 

A Monte-Carlo run of the simulation, sampling 100 random user request matrices for 
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each size and probability considered, was made with the number of users from 1000 to 5000, 
the number of information regions from 20 to 50, and the probability p varying from one-six- 
teenth to fifteen-sixteenths. These ranges were determined to be interesting by intersecting 
the problem region of interest with the region where the algorithm produces any useful 
results. The problem interest centers about many more information regions than 50, but the 
utility of the algorithm degrades as the number of information regions increases above 50, 
unless the probability is less than the one-sixteenth value, which is the smallest value for 
which the simulation was run. Even for the ranges simulated, some of the results are unin- 
teresting, especially when the probability becomes large. 

Figure 6 shows a typical result of the number of uncontained users as a function of the 
probability p, for 2500 users and 30 information regions. As the probability increases, the 
number of uncontained users increases rapidly until a maximum is reached somewhere near 
a probability of one-half, then the number of uncontained users falls rapidly with increasing 
probability until only one user is uncontained, because it is likely that some user has 
requested all the information regions (as Figure 5 above would indicate). The maximum 
number of uncontained users is, in this example result, about four-fifths the total number of 
users. 

2000-- 

1500-- 

1000 

500 

0:2 0:4 0.6 0.8 

Figure 6: Number of uncontained users versus probability 

Figure 7 shows the same kind of result, but for 5000 users and 50 information regions. 
What is illustrated is that the number of uncontained users is about equal to the total num- 
ber of users over much of the center of the range for probability. Such behavior is not useful, 
so as the number of information regions increases, interest in the algorithm shifts to small 
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values of the probability. 

5000-r 
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Figure 7: Number of uncontained users versus probability 

Table 2 shows the average results of the containment algorithm on 100 randomly 

selected user request matrices when the probability p is 0.5. The rows are for the number of 

Table 2: Monte-Carlo Simulation Results Sample; p = 0.5 

M\N 20 25 30 35 40 45 50 

1000 294 627 844 936 977 997 999 

1500 342 844 1202 1365 1452 1493 1498 

2000 379 1008 1529 1789 1920 1986 1996 

2500 411 1156 1832 2186 2380 2479 2494 

3000 383 1256 2115 2584 2832 2971 2991 

4000 406 1489 2663 3319 3720 3951 3985 

5000 400 1633 3159 4034 4588 4926 4976 

users, from 1000 to 5000, while the columns are for the number of information regions, from 
20 to 50. The main entries are the expected number of uncontained user requests. As can be 
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seen, when there are forty or more information regions, there is little or no containing of 
user requests over the range of users examined. This could be expected. With forty regions, 
there are two to the fortieth power possible user requests, which is more than ten to the 
twelfth power, and, with an element probability of one-half, each of these request rows is 
equally likely. There is very little chance that one row will contain another. 

Table 3 shows the same results when the probability p that any individual user wants 
any individual information region is reduced to 0.0625 (one-sixteenth) Here, the contain- 
ment algorithm shows considerable merit, but is of little help when the number of regions 
increases. 

Table 3: Monte-Carlo Simulation Results Sample; p = 0.0625 

M\N 20 25 30 35 40 45 50 

1000 95 147 206 235 329 405 470 

1500 117 189 273 314 454 563 662 

2000 139 229 332 390 565 717 841 

2500 161 266 394 452 677 859 1018 

3000 181 304 452 511 774 994 1182 

4000 214 364 546 611 955 1238 1487 

5000 241 416 628 700 1128 1458 1764 

Since major interest is on situations with up to a thousand information regions, it 
might be thought that the containment algorithm is simply unusable, but that is not neces- 
sarily true. User requests in the "real world" are not purely random, and it is not a require- 
ment that only one channel of information regions be sent to each user. It is entirely possible 
that the totality of information regions may be divided up into groups of 25 or 50 regions (on 
the basis of geographic region of origin perhaps, or some other natural affinity), and each 
group of regions is either very likely or very unlikely to be wanted by a user (depending on 
the geographic region of interest of the user). After grouping, the containment algorithm 
may provide significant help in preparing channels that consider only one group of informa- 
tion regions, with possibly several such channels (for differing groups) being sent to a user. 

Zipf Model Results. The Monte-Carlo results above are based on a model where each 
binary element of the user request matrix is statistically independent of the others, and each 
has the same probability of being 1. Requests for information are a kind of popularity con- 
test, and it is usual in such contests that a few of the options are much more popular than 
are the others. A second probability model was used to consider such a case. It is called the 
Zipf distribution, named after a Harvard linguist who used it to model the frequency of 
occurrence of words in English text. In the Zipf model, if the options—here, the information 
regions—are ranked according to their popularity, from 1 to N, then the probability that the 

n th region will be requested by any given user is 

15 



Containment algorithm 

Pn  =   "I (22) 

n 

where c is a constant between 0.0 and 1.0, and the exponent ß is near 1.0 (from 0.5 to 2.0 in 
this investigation). 

Using this model, the total number of Is in any one row of the user request matrix is 
expected to be 

N 

E{# of Is per row} = c £ -i (23) 
n 

n= 1 

If this value is divided by the row length N, it becomes the "average" probability of 

selecting any information region. Figure 8 plots the average, when the constant c is 1.0, for 

three values of the exponent ß. The utility of this plot is that it provides some basis for com- 
parison of the Zipf results to the Monte-Carlo results above, where all requests are equally 
likely. 

Figure 9 illustrates some of the Zipf results for 2500 users and 30 information regions. 

16 
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Figure 8: Zipf model overall average probability of requesting a region 
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Figure 9: Number of uncontained users versus probability (Zipf model) 

Comparison With Simulation. The simple testbed simulation whose results are presented 
in this paper is not the main ChannelTech software. The containment algorithm was also 
tested in the main software, but it is not easy to compare those results to the testbed results, 
because the probabilistic model used to generate user requests differs between the two. 

In the main simulation, information regions are described by attributes. In the main 
test runs discussed here, called "the special case", only three attributes are relevant: data 
type, access method, and keyword. The data type is one of the three list items: image, text, or 
video. The access method is one of the two list items: HTTP or FTP. The keyword is one of 
the 26 letters of the alphabet. An information region is described by a single data type, a sin- 
gle access method, and a single keyword, so there are 3x2x26 = 156 data regions. A user 
request specifies a single data type or all three data types, a single access method or both 
access methods, and a single keyword. There are only 4x3x26 = 312 possible different user 
requests. A user request may include 1, 2, 3, or 6 data regions. For each keyword, there are 
12 possible different user requests, as tabulated below in Table 4. 
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Table 4: User Requests (Each Keyword) 

category image text video HTTP FTP 

1 * * 

2 * * 

3 * * 

4 * * 

5 * * 

6 * * 

7 * * * * 

8 * * * * 

9 * * * 

10 * * * 

11 * * * 

12 * * * * * 

In Table 4, request category 12 is regarded as being at the top containment level—it 
contains all the other requests in the Table. At the middle containment level are request cat- 
egories 7 through 11—none of these contains any of the others, although each contains two 
or three of the requests at the lowest level. At the lowest containment level are the request 
categories 1 thorugh 6—none of these contains any of the others. For each keyword, it is easy 
to see that there are a maximum of six uncontained user requests (those at the lowest level). 
Any additional user requests would reduce the number of uncontained requests. Thus, in 
toto, there are a maximum of 6x26 = 156 uncontained user requests (which happens to be 
the same as the number of information regions). 

When user requests begin to come in, the number of uncontained user requests will, at 
first, grow to something approaching 156. As the number of user requests becomes large, for 
each keyword requests of category 12 will occur, and the total number of uncontained 
requests will tend toward 26—one category 12 request for each keyword. 

Each of the request categories tabulated above is equally likely to be selected in the 
main software. This means that each information region has an equal probability of being 
selected in any user request, a probability of 1/78. However, these selections are not indepen- 
dent. Given that a region of any specific keyword is chosen, the probability of also choosing a 
region of a different keyword is zero, not 1/78. 

When the testbed software is run with 156 information regions and with a probability 
of selecting any individual region in a single user request of p = 1 /78 , the results differ 
markedly from the main software tests. In the testbed, there are 2 to the 156th power possi- 
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ble different user requests, not 312, and equality and containment of requests is far less 
likely. As a consequence, the number of uncontained user requests is not limited, but grows 
rapidly with a growing number of total user requests. These results were obtained on the 
first trial of the testbed program, and are shown in Figure 10. 

In an attempt to reproduce the main software test results for the special case, the test- 
bed program was altered to fill the user request matrix with random Is and 0s according to 
the actual special case rules. The testbed software results for this second trial are shown in 
Figure 11. These results are what is expected. The slight lump in the curve at 900 total users 
is a statistical anomaly. Repeated runs of this case (averaging over 100 cases) are more 
inline with the rest of the curve. 

2500 

2000-- 

1500-- 

1000 

500 

1000 2000 3000 

total number of users 
4000 5000 

Figure 10: Uncontained users vs users for the special case (Trial 1) 
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500 1000 1500 

total number of users 

2000 2500 

Figure 11: Uncontained users vs users for the special case (Trial 2) 

Extensions to the Containment Algorithm—Clustering. It might be possible to alter 
the containment algorithm somewhat and improve its performance. One conceptual alter- 
ation is to contain two or more nearly equal user requests with a new, phantom, user request 
that contains them all, thus clustering several requests (that do not necessarily contain one 
another) into one. This might be done before, after, or in place of the containment algorithm. 

The concept of "nearly equal" is based on the Hamming distance between two binary 
sequences, which is simply the number of positions in which they differ. This measure, 
applied to the rows of the user request matrix, may be used to decide if two requests are 
nearly equal. 

The concept of containment leads almost immediately to an algorithm. One reason this 
happens is that the concept of containment is transitive. If row i contains row j, and row j 

contains row it, then row i contains row k. It is the property of transitivity that leads to con- 
tainment chains. In the containment algorithm, no user request rows are ever altered, and it 
makes no difference (except possibly for efficiency) in what order the user requests are con- 
sidered, the results are the same. 
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The concept of Hamming distance is not transitive. If row / is near row j, and row j is 

near row k, then row i may not be near row k. This makes it hard to find groups of rows 
that are all contained by some nearby (phantom) user request. It is easy to imagine a 
sequence of rows, each near its immediate neighbors but not near any other row in the 
sequence. 

The results of replacing rows by phantom rows depends on the order of operations. 
Suppose row 0 and row 1 have a Hamming distance of two, and row 0 is replaced by the 
phantom row that contains both, while row 1 is marked as being contained by the revised 
row 0. It might have been that row 2 had a Hamming distance of two from the original row 0 
as well, but it will not have a Hamming distance of two from the revised row 0. Or row 2 
might have a Hamming distance of two from the revised row 0, where it did not so nearly 
approach the original row 0. 

In the clustering algorithm, as implemented in the simulation, pairs of (uncontained) 

rows are considered, with row i being in an outer loop that starts at the top of the user 

request matrix, and row j being in an inner loop that starts with the next row after i. When 

the two considered rows are within the specified Hamming distance of one another, row i is 

replaced by the new containing row; row j is marked as contained by row i; no more rows j 

are considered for this row i; and row i is advanced by one until there are no more rows to 
consider. When the clustering algorithm completes, there may still be rows within the maxi- 
mum Hamming distance of one another. The algorithm could be repeated, with possible fur- 
ther reductions in the number of uncontained rows..Consider first using clustering after the 
containment algorithm. Once the containment algothm has eliminated from consideration 
the contained rows of the matrix, there are no two equal rows left, rows whose Hamming dis- 
tance from one another is zero. Nor are there any two rows left whose Hamming distance is 
one, for, if there were, one of those rows would have a 1 where the other had a 0, being other- 
wise the same, and thus contain the other row. So the minimum Hamming distance among 
the uncontained rows is two. 

Reverse Containment. The concept of containment may be used for a different kind of 
algorithm. Begin with any channelization and user subscription matrices. For example, start 
with the one-channel-per-user approach. Then search for channels that are contained by 

other channels. When channel i is contained by channel ;', remove row i from row j of the 

channelization matrix C (remove all the Is in row / from row ;'), and then go down column i 

of the subscription matrix S, placing Is as necessary to assure that each user previously 

subscribing to channel j now subscribes to both channels i and j. That is, once / and j are 

found, for n = 1, ..., N, set Cjn to 0 whenever Cin is 1; then for m = 1, ..., M, set Smi to 1 

whenever S  • is 1. 

This reverse containment algorithm does not, at first, appear to change the number of 
channels. It simplifies some channels by breaking them into parts, which are then reassem- 
bled in the user subscriptions, causing the total system information load to decrease, while 
not increasing any user load. In fact, the number of channels may decrease, because all 
information regions may be removed from them. If one channel happened to be the union of 
two others, then the two smaller channels could be removed from the larger one, leaving 
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nothing. 

This algorithm, too, is not completely defined by the description above. Row k may con- 

tain both rows i and ;' (and others). Which, of these contained rows, is removed from row k 
is a matter of choice, and here it is not easy to see which choice is best. Once a containing 
channel has been made smaller by removal of a contained channel, then the new smaller 
channel is likely to be contained by others, and it may be removed from them. 

When this algorithm is tested on randomly constructed problems that have fewer 
information regions than users, especially if the probability that a given user requests a 
given information region is either low or high, what often happens is that the channelization 
is initialized to the one-channel-per-user solution, but winds up at the one-channel-per-infor- 
mation-region result—a result having fewer channels and far lower total system load. When 
there are many more information regions than there are users, the number of containments 
becomes vanishingly small, and the reverse containment algorithm does nothing. 

As implemented in the algorithm test bed, the reverse containment algorithm consid- 
ers the rows of the channelization matrix, not in their storage order, but in order of their 
length—length being the number of Is in the row—from shortest to longest. This means that 
the shortest (non zero) rows are removed from the others that contain them first. It also 
means that the process must be repeated, because the removal of one row from another 
shortens one row. For 5000 users and 50 information regions, this process can take minutes 
on a PC, so that averaging over 100 trials can take hours for a single probability, a single 
number of users, and a single number of information products. And the answer is almost 
always the same when, as in this case, there are many more users than there are informa- 
tion regions. As mentioned above, the result is that one channel is assigned to each informa- 
tion region alone. 
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CHANNELIZATION 

Introduction 

This note summarizes terminology and preliminary thoughts pertinent to the problem 
of channelizing information to be distributed over a network. There are presumed to be mul- 
tiple users who want various portions of a large spectrum of information. The users indicate 
their information interests by submitting information profiles to a central distribution point, 
where some strategy is devised to disseminate the information. The distribution strategy is 
to compose information into various channels and then distribute the channels, having users 
subscribe to those channels containing the information they want. Many ways have been 
used to describe this problem, and it can be confusing to compare ideas with similar, but not 
identical, terms and concepts. 

The discussion here veers between a clean, mathematical problem description and con- 
sideration of more practical, worldly issues. 

Users and Information Regions 

One way to begin to think about the channelization problem is to specify a number of 
users and a number of disjoint, elementary information regions. 

M is the number of users of information. 

N is the number of regions of information, sometimes called information products. 

A is the user information request matrix, an MxN binary matrix. 

(A)mn - 
1  if user m wants information region n 

0 if not 
(1) 

Generally, this user request matrix is considered as known. 

Profiles and Factoring 

In practice, information is described by attributes, a predefined list of parameterized 
features. For example, one attribute of information might be the geographic location to 
which it pertains. The parameters of this attribute might be latitude and longitude limits of 
a region of the Earth. Another attribute might be information type, with the parameter 
being another list item, such as imagery, signal, or communications. A user does not gener- 
ally have knowledge of the existence of any particular item of information. Instead, a user 
requests information that matches a submitted information profile, where the attributes of 
the desired information are listed. 

A profile set consists of all information that matches a certain user request profile. 
Information regions are the disjoint, nonempty intersections of the profile sets and their 
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complements, so that each user profile set is simply the union of some such regions. Since 

there are M user profiles and corresponding profile sets, there could be as many as 2   - 1 
information regions. 

Suppose the subsets of information that match the user profiles are denoted by Pm, for 

m = 1, ..., M. From these profile sets, the information regions are obtained by a process 
called factoring. In what is termed "fully-factored" form, the information regions could be 

M 
denoted by Rn and numbered from 1 to 2   - 1, and 

M 

Rn=    nQnm> (2) 

m= 1 

where the binary representation of n is bnMbnM _\---bn2bn\, and 

_  \pm    if bnm = 1 

Qnm~\P~m    if*Hm = 0 (3) 

The profile sets may be recovered from the regions by 

2M-1 

P    =   i   i T (4) 

n= 1 

where 

T       =\
Rn      if*„m=   1 

mn "10   if^ = o (5) 

Another way to put this, perhaps easier to grasp, is to express the elements of the user 
request matrix as 

Kn  =  Km ^ 

For example, if M = 4,theni?10 = PAP3P2P\ > because 10 = 1010)b. The complete user 

request matrix in this fully-factored example case is 
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A = 

101010101010101 

011001100110011 

000111100001111 

000000011111111 

(7) 

Note that the n th column of A, reading from bottom to top, has the binary digits of n . 

Many, perhaps most, of these fundamental information regions may be empty, and 
may be disregarded. That is, numerous columns may be missing from the fully-factored form 
of the request matrix, because they correspond to empty information regions. It will not be 
assumed in the sequel, unless made explicit, that the information regions correspond to the 
user requests in this fully-factored form. 

Information Attribute Parameter Ranges 

It can be very difficult to factor user profiles into information regions when the infor- 
mation attributes are parameterized by other than finite lists of items. For a prime example, 
suppose one of the attributes is geographic location, as specified by arbitrary ranges of lati- 
tude and longitude. Then, in any one user profile, the geographic range of information corre- 
sponds to the union of rectangles in latitude-longitude coordinates, perhaps only one or two 
such rectangles. If many such profiles are factored into information regions, the geographic 
ranges for the regions may quickly devolve into complex figures in latitude-longitude coordi- 
nates. Each of these figures could still be represented as the union of (very many, tiny) rect- 
angles, but the bookkeeping would be demanding. It is probably best to treat even those 
attributes that are naturally described by arbitrary continuous ranges of some parameter or 
parameters as a finite list instead, specifying geographic regions by UTM map squares, for 
example, or even by much larger natural regions of interest. 

Such partitioning of continuous variable ranges into finite lists enables a much simpli- 
fied factoring process, and more. One attack on the channelization problem is to recognize 
when user requests or channel contents differ by little, so two or more requests may effec- 
tively be considered as one. That is, a "blurring" of the user profiles is somehow accom- 
plished to identify "look-alike" profiles. Going from arbitrary continuous parameter ranges 
to preestablished lists of parameter ranges is essentially a step in the blurring process, one 
that regularizes requests so that look-alikes are easier to identify. 

Profile Sets Versus Information Regions 

A significant issue is that of beginning the consideration of the channelization problem 
with the concept of information regions at all. Given numerous user profiles, the problem of 
constructing the potentially much more numerous information regions can be so difficult 

that it will never be practically accomplished. A mere 500 users could generate 10      infor- 
mation regions, a completely impractical number to deal with, even if most of the regions 
turn out to be empty. It is very likely that any practical algorithms will have to deal with the 
profile sets themselves, and not presume that they are first factored into disjoint regions. 

Most of the thinking about the channelization problem, however, has begun with the 
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starting point of information regions, and some ofthat thinking is summarized here, so the 
regions viewpoint will be presented. 

Channels 

K is the number of channels of information. 

C is the channel information matrix, or channelization matrix, a KxN binary matrix. 

[ 1 if channel k contains information region n 
{C)kn =   0 ifnot 

1 (8) 

S is the user channel subscription matrix, an MxK binary matrix. 

[ 1   if user m subscribes to channel k 
{S)mk = JO ifnot 

Generally, the number of channels, the channelization matrix, and the subscription 
matrix are considered as unknown. 

Note that the matrix product 5CisanMxJV matrix of integers where the mn th ele- 

ment is the number of times user m receives information region n. If each user is to get all 

the information that is requested, then SC>A. This constraint, unfortunately, is a nonlin- 

ear one if both C and S are unknowns. 

The nonlinearity of the constraint above has been a serious block to attempts to cast 
the channelization problem into what is called a "mixed-integer, linear program". Many 
scheduling and resource allocation problems that have similarities with the channelization 
problem may be so cast, and there is a wealth of study results, polished algorithms, and soft- 
ware available to attack such problems. It is attractive to think that the channelization prob- 
lem might benefit from these studies, but it has not, as yet. 

The function bin(  ) is defined as 

f1    if**° bin(x) = \ 
0   if JC = 0 

1 (10) 

R is the user information receipt matrix, an MxN binary matrix, defined element-by- 
element as 
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<*>„ = bin«5C>„„) = not 

1   if user m receives region n 

(11) 

or, in shorthand, as R = bin(SC). 

Information Density 

D is the information density matrix (vector), aniVxl nonnegative matrix whose nth 

element measures the density of information region n, and is generally a known quantity. A 
crude approximation when no density information is available is to treat all nonempty infor- 

mation regions as having unit density, that is, to set D = lN, where 1N is the N x 1 matrix 

(vector) with elements all Is. 

In practice, what is given, if anything, is not an information density vector for the 
regions, but some way to estimate the information density of a specified information set, be 
it a profile, a region, a channel, or some other set. In theory, applying this function to the 
regions produces the density vector, although that computation itself might be impractical. 

The matrix product CD is the channel load matrix, a Kx 1 nonnegative matrix (vec- 

tor) whose ifcth element is the total information density on channel k. 

The scalar l^CD (which is simply the sum of all the elements of CD) is the total sys- 

tem information density, or the total system load—the sum of the information densities on 
all the channels. 

The matrix product 5 CD is the user received load matrix, an M x 1 nonnegative 

matrix (vector) whose m th element is the total information density received by user m. 

The matrix product AD is the user requested load matrix, an M X 1 nonnegative 

matrix (vector) whose m th element is the total information density requested by user m. 

The matrix product (SC- A)D is the user excess load matrix, an M x 1 nonnegative 

matrix (vector) whose m th element is the total excess information density for user m. This 
definition depends on the assumption that the user gets all the requested information, so 

that SC>A. 

There may be limits on information density. The system as a whole might have a limit, 
and each user might have a limit. 

Utility 

U is the user information utility matrix. It is an M X N nonnegative matrix whose 
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mn th element measures the utility to user m of information region n . 

V is the user value matrix (vector). It is an M x 1 nonnegative matrix whose m th ele- 

ment is the total utility of the information received by user m . Note that 

N 

<v>m = £ <*»„„<*>»„ (12) 

n= 1 

This operation is not a standard matrix operation. The vector V is the main diagonal of the 

matrix URT, but the other elements of this matrix have no meaning. 

VT is the total system value, the sum of the values received by the users. 

M 

VT=   ^ (V)m = tr(URT) (13) 

m= 1 

where tr(  ) is the matrix trace operator, the sum of the elements on the main diagonal. 

Maximizing value may be an issue in some channelization problems. 

The Channelization Problem 

At its simplest, the channelization problem features the given data M, N, and A—the 
number of users, the number of information regions, and the user information request 
matrix describing which information is wanted by which user. A solution to the problem 
finds K, C, and S—the number of channels, the channel information matrix describing 
which information goes onto which channels, and the user subscription matrix describing 
which users listen to which channels. As stated, there is no unique solution to the problem, 
many solutions are feasible. A feasible solution here means that each user gets all the infor- 
mation that was requested. 

Besides being feasible, there are other considerations for channelization solutions. 
Some times these considerations may involve hard limits (inequality constraints), while at 
other times they involve softer goals (some function to be optimized). Possible limits on sys- 
tem or user information density were mentioned above. There could be limits on the number 
of channels per user or on the total number of channels. 

Generally it is considered better if 

• the number of total channels is lower 
• the number of channels received by any user is lower 
• the system information density is lower 
• the information density to any user is lower 
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• the value of information to any user is higher 
• the total value of information to all users is higher 

The view here of the channelization problem is a static one, where the users and their 
profiles are unchanging, and, thus, the information regions are unchanging. In the "real- 
world" problem, the number of users and their requests change with time, and the channel- 
ization problem is frequently reworked. It may be practically inconvenient, if not impossible, 
to totally rework the problem for each new user request, so there is an interest in algorithms 
that modify a prior solution when a new user request is received or when a user request is 
withdrawn. 

Preliminaries 

There are some properties of the user request matrix in a "well-posed" channelization 
problem. No entire row of the request matrix may be zero, for that would mean a user who 
has requested no information, and such a user simply could be dropped from consideration. 
No entire column of the user request matrix is zero, for that would mean an information 
region requested by no user, and such an information region simply could be dropped from 
consideration. Of course, no such region would be created by the factoring process. 

Another impossibility in a well-posed problem is that two or more columns of the 
request matrix are identical. This would imply two or more information regions that are 
"totally correlated"—requested by the same subset of users. Since the information regions 
are formed by factoring user information profiles, such a set of regions would never be cre- 
ated. Instead, they would be lumped into one, combined region. It is possible that two or 
more rows of the request matrix are equal. This means two or more users with identical 
information requests. 

It is sometimes illuminating to experiment with the channelization problem in a com- 
puter simulation where the number of users and the number of information regions are spec- 
ified, and the binary user request matrix is filled with Is and Os in some random manner. 
Such experimentation does not necessarily lead to a well-posed problem. A matrix randomly 
filled with Is and Os may well have all-zero rows or all-zero columns or equal columns. 

One general approach to the problem is to initialize the channelization matrix equal to 
the user request matrix—the so-called "one-channel-per-user" singlecast solution mentioned 
below, and then find algorithms that modify the channelization and subscription matrices to 
improve the solution. During this process, it is entirely possible, even desirable, that an 
entire row of the channelization matrix becomes zero, meaning a channel with no informa- 
tion—a channel that disappears. It is never possible in a feasible solution that an entire col- 
umn of the channelization matrix might vanish, for that would mean an information region 
available to no channel. Since, as mentioned above, every information region was requested 
by some user, every information region must be included on some channel. 

Simple Solutions 

The one-channel-per-region solution. One trivial solution is to create a single channel 
for each information region and send that channel to each user who requests the region. 
That is, 
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K = N,     C = IN,     S = A (14) 

where IN is the NxN identity matrix. In this solution, the total system information density 

is minimized, and no user gets any excess information, but the number of channels and their 
management may well be excessive. 

The one-Channel-per-USer solution. Another simple solution is to create a separate 
channel for each user and put on it only what that user has requested. This solution is 

K = M,     C = A,     S = IM (15) 

This one-channel-per-user singlecast solution assures that no user gets any excess 
information, but the total system information load will likely be very high. 

The one-channel solution. Another trivial solution is the one-channel solution. All the 
information regions are placed onto a single channel, and every user subscribes to that chan- 
nel. This solution is 

K=l,     C=lTN,     S=lM (16) 

This solution just passes along the problem of sorting out the information to the ulti- 
mate users, who may lack the resources to accomplish its solution. The expectation is that 
there is so much total information that no user has the resources to receive it all, store it, 
and decide what is valuable. The whole point of the channelizing is to place this burden on 
some central network authority, removing it from the users. 

Manipulating the Channelization and Subscription Matrices 

Channelization algorithms make changes to the channelization matrix and to the sub- 
scription matrix. Sometimes these changes reduce the number of channels by eliminating 
some channels. Sometimes the channels must be put into a particular order to implement an 
algorithm—"smallest" channel first, say. As a practical matter, it is often not a good idea to 
actually change the allocated size of the channelization matrix or to rearrange the storage 
order of its rows. Instead, it is usually efficient to establish and maintain one or more "order- 
ing" arrays which serve to indirectly address rows of the channelization matrix in some spec- 
ified order, or to allow rows to be disregarded entirely. 

For example, the number of information regions per channel might be used to order the 
channels (rows), with a 0 or -1 entry used to indicate "dead" channels that have been 
removed. Two integer arrays of length K might be established. One, a count array, has the 

count of the number of information regions contained in the Hh channel, and the other, an 

order array, has a list of numbers from 1 to K, rearranged so that the ;'th element of the 

order array is the row number of the ;'th "smallest" channel by count. This method will usu- 
ally improve the efficiency of a channelization algorithm. 
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No-cost improvements 

One approach to solving the channelization problem might be to start with some initial 
solution, perhaps one of those trivial solutions given above, and then improve that solution 
by revising the channelization and subscription matrices. 

It could happen that two or more channels contain the identical information—the 
same set of information regions. In this case, it is a simple matter to eliminate all but one of 
the identical channels, and resubscribe all users that got any of them to the remaining one. 

Unless the problem involves information utility considerations that are not identical, it 
seems reasonable to assign all users with identical requests to the same subscription of 
channels. In the case of "one channel per user", this provides a simplification of not creating 
multiple identical channels, although such simplification is not easily expressible in matrix 
symbolic terms. The result would be "one channel per unique user request". If we denote by 

A' = ndup(A) (17) 

the result of the operation of striking out from the matrix A all rows that are equal to any 

row above them, then it is easy to see that C = A' and K is the number of rows remaining 

in C, but it is not easy to express the subscription matrix, which will no longer be square, 

although it will have a single 1 in each row. The way to create the S matrix is to begin with 

the M x M identity matrix, and whenever row m of A is deleted because it is equal to some 

preceding row p, then column m of S should be deleted, while column p should have a 1 

placed into the m th row. 

containment Algorithms 

Direct containment. A more complex algorithm is called the "containment algorithm". 
Begin with any channelization and subscription matrices. Examine the rows of the channel- 

ization matrix to see if any row is "contained" by another. Row ; "contains" row k if every 

element of row j equals or exceeds its counterpart in row k. For the binary channelization 

matrix, this means that row j has a 1 in each column where row k has a 1. When one row 
contains another, one channel has every information region that is included in another. In 
the containment algorithm, when a row of the channelization matrix is contained, it is 
removed, and users previously subscribing to that channel are subscribed instead to the con- 

taining channel. This containment may chain. That is, channel i may be contained by chan- 

nel ; , which, in turn, is contained by channel k, and so on. All these channels are ultimately 
replaced by the single channel that contains them all. 

The resulting information channelization (the number of channels and which channels 
carry which information regions) is unique, but the user subscription matrix is not necessar- 
ily unique. It is quite possible that two rows, neither of which contains the other, each con- 
tain a third, and the users ofthat third row may be reassigned to either of the first two 
channel rows. The channel selected depends on the details of the algorithm. The result is 
that each user subscribes to a single channel, but there may be fewer channels than users, 
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and some users receive excess information. To reduce that excess information it is useful to 
organize the algorithm so that smaller rows (rows having fewer Is) are considered before 
larger rows when searching for containments. This assures that the smaller of two rows that 
contain a third will be chosen to replace the contained row. It also speeds up the algorithm, 
for a smaller row can never contain a larger row, and these cases never need be examined. 

When several channels each carry most of the information regions to begin with, what 
may happen is that these channels contain all the others, and the result is the one-channel- 
with-everything case. When there are many more information regions than there are users, 
the number of containments becomes vanishingly small, and the containment algorithm 
does nothing. 

Reverse containment. The concept of containment may be used for a different kind of 
algorithm. Begin with any channelization and user subscription matrices. For example, start 
with the one-channel-per-user approach. Then search for channels that are contained by 

other channels. When channel / is contained by channel;', remove row i from row ; of the 

channelization matrix C (remove all the Is in row i from row j), and then go down column i 
of the subscription matrix, placing Is as necessary to assure that each user previously sub- 

scribing to channel j now subscribes to both channels i and j. That is, once / and j are 

found, for n = I, ...,N, set C-   to 0 whenever Cin is 1; then for m = 1, ..., M, set Smi to 1 

whenever S  • is 1. This reverse containment algorithm does not, at first, appear to change 

the number of channels. It simplifies some channels by breaking them into parts, which are 
then reassembled in the user subscriptions, causing the total system information load to 
decrease, while not increasing any user load. In fact, the number of channels may decrease, 
because all information regions may be removed from them. If one channel happened to be 
the union of two others, then the two smaller channels could be removed from the larger one, 
leaving nothing. 

This algorithm, too, is not completely defined by the description above. Row k may con- 

tain both rows i and ;' (and others). Which, of these contained rows, is removed from row k 
is a matter of choice, and here it is not easy to see which choice is best. Once a containing 
channel has been made smaller by removal of a contained channel, then the new smaller 
channel is likely to be contained by others, and it may be removed from them. 

When this algorithm is tested on randomly constructed problems that have fewer 
information regions than users, especially if the probability that a given user requests a 
given information region is either low or high, what often happens is that the channelization 
is initialized to the one-channel-per-user solution, but winds up at the one-channel-per-infor- 
mation-region result—a result having fewer channels and far lower total system load. When 
there are many more information regions than there are users, the number of containments 
becomes vanishingly small, and the reverse containment algorithm does nothing. 

Clustering Algorithms 

Further reductions in the number of channels may be accomplished by an algorithm 
(or a group of algorithms) called "clustering". In this concept, when two or more user 
requests differ by little (perhaps as measured by the information density) each of them is 
assigned to a channel that contains them all, a channel made by unioning the information 
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regions in the nearby requests. Algorithms of this type produce results that depend on the 
precise ordering of comparisons and replacements. Clustering algorithms maintain the one- 
channel-per-user result. 

11 
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EXPERIMENTAL SOFTWARE DESCRIPTION 

Introduction 

As a part of the investigation of the channelization problem, an experimental test-bed 
computer program was written to simulate, exercise, and evaluate some candidate channel- 
ization algorithms using probabalistic assumptions about user requests for information. 
This program, named CPcrib, is not a part of the main deliverable software of the project and 
is not a polished product. It is a flexible and modifiable tool primarily created to be used only 
by its maker, but possibly of further use. It is described here mostly to enable better under- 
standing and interpretation of its results—this is not a user's manual. In addition to this 
document, the program code contains much useful comment information, more than might 
be expected. 

The program is a console application that takes user input only from the command line 
and writes its major outputs to a log file named CPcrib.log, although some error indications 
and minor output are written to the screen. The user generally specifies a probabalistic 
mode to simulate user information requests, specifies the probability parameters involved, 
specifies the size of the problem, by giving the number of users and the number of informa- 
tion regions, and specifies a channelization algorithm. Options are available to examine a 
hard-wired range of probability parameters and/or a hard-wired range of problem sizes in 
one run. A debug option is also available, although that is primarily useful only during pro- 
gram modification. 

When considering the containment algorithm (which was implemented first), the pro- 
gram deals with the "user request matrix", which is a binary matrix where a 1 in row m and 
column n indicates that user m is requesting information region n. For the other channeliza- 
tion algorithms, the program uses the "channelization matrix", another binary matrix 
where a "1" in row m and column n indicates that channel m contains information product n. 
One or the other of these matrices is initialized in some probabalistic way, and a channeliza- 
tion algorithm is exercised that modifies the matrix. Measures of performance are made, 
before and after channelization, and such measures are averaged to produce results. 

the program has several probabalistic modes of operation: a deterministic mode used 
only with the containment algorithm, and three Monte-Carlo modes used with all algo- 
rithms. If the total number of elements in the user request matrix (the number of users 
times the number of information regions) is quite small, say fewer than 28 or so, then there 
are only two raised to the power of this number of possibilities for the user request matrix. 
With 28 elements, there are just over 268 million different possible such matrices. In the 
deterministic mode, each of these possibilities is examined in turn. The probability of a par- 
ticular user request matrix occurring is computable by counting the total number of Is in the 
matrix, and applying channelization algorithms to each matrix allows result statistics to be 
computed. 

In the deterministic mode, called the "det" mode in the program, each element of the 
binary matrix is assumed to be an i.i.d. (independent, identically distributed) random vari- 
able. The only parameter needed to describe this situation is the probability that any ele- 
ment is "1". The deterministic mode allows a range of several different such probabilities to 
be examined at once. The same deterministic sequence of matrices is involved, regardless of 
the probability. Only the weighting factors involved in averaging the performance results 
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change as the probability changes, so several different weighting factors may be considered 
at once. 

Prime interest in the algorithms is on cases with many more than 28 elements in the 
user request or channelization matrix, in fact, with thousands of elements in the matrix, 
where the deterministic mode is out of the question. The Monte-Carlo modes fill the matrix 
according to a specified probability that any element is 1. A channelization algorithm is then 
applied to the randomly initialized matrix, the performance of the algorithm is assessed, and 
that assessment is averaged over a specified number of random samples for the initial 
matrix. The Monte-Carlo modes can only consider a single probability scheme at one time, 
since the elements in the sample matrices depend on the scheme. The three schemes in the 
program are discussed below. 

Random Binary Matrices 

In order to test channelization algorithms it is useful to be able to fill binary matrices, 
such as the user request matrix A or the channelization matrix C, with random sequences 
of Is and Os. The program does this in one of three different ways. 

It is easy to create a stream of binary bits—Is and Os—that appear independently ran- 
domly chosen with a probability of 1 of exactly one-half. Such a stream might represent a 
sequence of fair coin flips, where 1 means a head, and 0 means a tail. To do this requires an 
integer random number generator. 

The first such integer generator that was used—now supersceded—implemented the 
mathematical relationship 

seed <- (65539 * seed) mod 2147483648 (1) 

via the code 

seed = 65539 * seed; 

if ( seed < 0 )   seed = ( seed + 2147483647 ) + 1; 

beginning with seed as any odd, positive integer. The multiplier here is two to the sixteenth 
plus three, while the modulus is two to the thirty-first power. This code is believed to have 
originated in the dark ages of computing at IBM as a part of the RANDU FORTRAN random 
number generator, and it depends on thirty-two bit, two's-complement integers and on inte- 
ger overflow going unnoticed. It is very efficient. Problems were finally noticed with this gen- 
erator, and a quick survey of the random number generator literature showed that this 
generator is notoriously bad, so it was replaced. 

The replacement code implements the very similar looking mathematical relationship 

seed <r- (16807 * seed) mod 2147483647 (2) 

The multiplier here is seven to the fifth power, while the modulus is one less than two to the 
thirty-first power, which is a prime number. The implementation avoids any possibility of 
integer overflow, as 
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seed = aa * ( seed % qq ) - rr * ( seed / qq ); 

if ( seed < 0 ) seed += mm; 

where aa is the multiplier 16807; mm is the modulus 2147483647; qq is 127773, which is the 
integer part of mm divided by aa; and rr is 2836, which is the remainder on dividing mm by 
aa. This generator is slower than the original one, but it generates much more random low- 
order bits of the seed, and has a longer period. 

Such random integers may be split up into bits to produce a stream of random bits, 
each of which has a probability of 1 of one-half, and each of which is independent of the oth- 
ers. Of course, the "zeroth" (most significant, top) bit of seed cannot be used. Since seed is 
always positive, this bit is always 0. The low-order 31 bits are used. 

The very first way the program worked (now abandoned) was to use such a stream of 
bits to fill the binary matrices. This method was very efficient, but very limiting, for the only 
value of the probability of 1 available was one-half. 

The second mode (called the "hex" mode and still available, but outdated) creates from 
the random bits above a second stream whose probability of 1 is an integral multiple of one- 
sixteenth. It does this by taking the original bits four-at-a-time, and comparing the resulting 

random integer (from zero to fifteen) with a fixed integer np (from one to fifteen). If the ran- 

dom integer is less than the fixed integer, then the resulting bit is set to 1 (otherwise it is set 

to 0). The probability that the resulting bit is 1 is np divided by sixteen. This method is con- 

ceptually simple, easy to implement, fairly efficient, but still limiting. Each random integer 
generates seven such random bits. 

The third mode (called the "gen" mode) allows any probability of 1 to be used, approxi- 
mating that probability by a thirty bit binary fraction. The problem is to efficiently turn a 
sequence of equally likely Is and 0s into a sequence of Is and 0s where the probability of 1 is 

the arbitrary p. Let the equally likely binary "input" sequence be denoted as {bx, b2, ...} . 

Let the K bit binary approximate expansion of p be p = 0.pxp2 ■ ■ -PK ■ Let the binary "out- 

put" sequence be {cv c2, ...} . To generate cx, simply test the sequence of bs against the 

sequence of ps, and set cx to the first pk that is not equal to bk. To generate subsequent cs, 

repeat the process, renumbering the b s so that the first unused b is b j. 

As an example, suppose eight-bit approximations for probability values are used 

181 
(K = 8), and p =   = 0.10110101 )b. Suppose the equally-likely input bit stream is 

256 

{bk} = {100111010011001101000...}. First, px = bx = 1, so fc, is ignored. Next, 

p2 = b2 = 0, so b2 is also ignored. Next, p3 * b3, so cl = p3 = 1. (In case this process 

goes all the way to pK = bK, just pick c{ arbitrarily.) To go on to find c2, just start over, 

except discard the first three "used" bits from the b sequence, renumbering the remainder. 

On average, two (or slightly fewer) bits of the b input sequence will generate one bit of the c 
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output sequence, whatever number of bits are used to approximate p . 

This method is not so conceptually obvious, and is harder to implement than the previ- 
ous method, but is even more efficient, and may be used for any probability. 

The fourth mode (called the "zipf mode) needs some introduction. The modes above 
have the same probability of "1" for each element of the matrix, which means that any infor- 
mation region is, on average, as likely to be requested as any other. Real-world requests for 
information regions, however, are a type of popularity contest. It is typical of such contests 
that the popularity of a few objects is far higher than that of most others. Statistical studies 
often show that if the objects of choice are ranked in order of decreasing popularity, then 
their relative likelihood is roughly proportional to the inverse of the rank order raised to 
some constant power, a power usually near 1.0. That is, if the popularity rank of an object is 

r, where r = 1,2,..., then the probability of selecting that object is 

Pr=~a (3) 
r 

where the constant c is between zero and one, and the exponent ß is near one. This proba- 
bility law is often called Zipf's law, after a Harvard linguist who used it to model the occur- 
rence of words in English text. It has also been used to model the distribution of city 
populations (people choosing homes), of corporate incomes (dollars choosing homes), and of 
website popularity (users choosing information regions). 

Taking logarithms 

logpr = logc-ßlogr (4) 

so that Zipf's law graphs as a straight line on log-log paper. Of course, almost every reason- 
able relationship graphs as a straight line on log-log paper. 

Assuming that the information regions are ranked according to their popularity, Zipf's 
law may be used to randomly fill the user request or the initial channelization matrix. It 
would be convenient if the summation 

-<ß> =   S 1 (5) 
r= 1 

could be expressed in some simple closed-form way, but it cannot. This sum is proportional to 

the expected number of the objects of rank 1 through n. For exponent ß less than or equal to 

one, the sum diverges with increasing n. 


